Image restoration and classification by topological asymptotic expansion

We present in this paper a new way for modeling and solving image restoration and classification problems, the topological gradient method. This method is considered in the frame of variational approaches and the minimization of potential energy with respect to conductivity. The numerical experiments show the efficiency of the topological gradient approach. The image is most of the time restored or classified at the first iteration of the optimization process. Moreover, the computational cost of this iteration is reduced drastically using spectral methods. We also propose an algorithm which provides the optimal classes (number and values) for the unsupervised regularized classification problem.

[1]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[2]  Theodosios Pavlidis,et al.  Integrating region growing and edge detection , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[4]  Gilles Aubert,et al.  Wavelet-based level set evolution for classification of textured images , 2003, IEEE Trans. Image Process..

[5]  Joachim Weickert,et al.  Theoretical Foundations of Anisotropic Diffusion in Image Processing , 1994, Theoretical Foundations of Computer Vision.

[6]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[7]  H. Ammari,et al.  Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations , 2001 .

[8]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[9]  M. Masmoudi,et al.  Crack detection by the topological gradient method , 2008 .

[10]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[11]  Bessem Samet,et al.  The Topological Asymptotic for the Helmholtz Equation , 2003, SIAM J. Control. Optim..

[12]  Josiane Zerubia,et al.  A Variational Model for Image Classification and Restoration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Didier Auroux,et al.  Image Processing by Topological Asymptotic Expansion , 2009, Journal of Mathematical Imaging and Vision.

[14]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[15]  L. Vese,et al.  A Variational Method in Image Recovery , 1997 .

[16]  Mohamed Jaoua,et al.  Image restoration and edge detection by topological asymptotic expansion , 2006 .

[17]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[18]  Heinz W. Engl,et al.  Inverse and Ill-Posed Problems , 1987 .

[19]  Josiane Zerubia,et al.  Bayesian image classification using Markov random fields , 1996, Image Vis. Comput..

[20]  J. Sethian Level set methods : evolving interfaces in geometry, fluid mechanics, computer vision, and materials science , 1996 .

[21]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[22]  Philippe Guillaume,et al.  The Topological Asymptotic for PDE Systems: The Elasticity Case , 2000, SIAM J. Control. Optim..

[23]  R. Dautray,et al.  Analyse mathématique et calcul numérique pour les sciences et les techniques , 1984 .

[24]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[25]  Avner Friedman,et al.  Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence , 1989 .

[26]  F. Hwang Optimal partitions , 1981 .

[27]  Ph. Guillaume,et al.  Topological Sensitivity and Shape Optimization for the Stokes Equations , 2004, SIAM J. Control. Optim..

[28]  G. Allaire,et al.  Optimal design for minimum weight and compliance in plane stress using extremal microstructures , 1993 .

[29]  G. Allaire,et al.  A level-set method for shape optimization , 2002 .

[30]  Ph. Guillaume,et al.  The Topological Asymptotic Expansion for the Dirichlet Problem , 2002, SIAM J. Control. Optim..

[31]  Joachim Weickert,et al.  Efficient image segmentation using partial differential equations and morphology , 2001, Pattern Recognit..

[32]  Jan Sokoƒowski,et al.  TOPOLOGICAL DERIVATIVES OF SHAPE FUNCTIONALS FOR ELASTICITY SYSTEMS* , 2001 .

[33]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[34]  Gilles Aubert,et al.  Optimal partitions, regularized solutions, and application to image classification , 2005 .