Guided by the light: visualizing biomolecular processes in living animals with bioluminescence.

Bioluminescence imaging (BLI) exploits the light-emitting properties of luciferase enzymes for monitoring cells and biomolecular processes in living subjects. Luciferases can be incorporated into a variety of non-luminescent hosts and used to track cells, visualize gene expression, and analyze collections of biomolecules. This article highlights recent applications of BLI to studies of mammalian biology, along with the development of novel bioluminescent probes to 'see' cells and molecules in action. Collectively, these efforts are expanding our understanding of living systems and shedding light on the molecular underpinnings of disease.

[1]  P. Cossart,et al.  Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis , 2008, Nature.

[2]  J. Rao,et al.  Imaging Target mRNA and siRNA‐Mediated Gene Silencing In Vivo with Ribozyme‐Based Reporters , 2008, Chembiochem : a European journal of chemical biology.

[3]  David K. Stevenson,et al.  Bioluminescent indicators in living mammals , 1998, Nature Medicine.

[4]  Harold Varmus,et al.  Seeding and Propagation of Untransformed Mouse Mammary Cells in the Lung , 2008, Science.

[5]  Ralph Weissleder,et al.  Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy , 2009, Proceedings of the National Academy of Sciences.

[6]  P. R. Contag,et al.  In vivo bioluminescent monitoring of chemical toxicity using heme oxygenase-luciferase transgenic mice. , 2004, Toxicology and applied pharmacology.

[7]  Gary D Luker,et al.  Applications of bioluminescence imaging to the study of infectious diseases , 2007, Cellular microbiology.

[8]  David Piwnica-Worms,et al.  Current state of imaging protein-protein interactions in vivo with genetically encoded reporters. , 2007, Annual review of biomedical engineering.

[9]  Sanjiv S Gambhir,et al.  Self-illuminating quantum dot conjugates for in vivo imaging , 2006, Nature Biotechnology.

[10]  Frank Fan,et al.  Novel genetically encoded biosensors using firefly luciferase. , 2008, ACS chemical biology.

[11]  Christopher H Contag,et al.  Methods for imaging cell fates in hematopoiesis. , 2007, Methods in molecular medicine.

[12]  D. Piwnica-Worms,et al.  Spying on cancer: molecular imaging in vivo with genetically encoded reporters. , 2005, Cancer cell.

[13]  P. Hwu,et al.  Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer , 2008, Proceedings of the National Academy of Sciences.

[14]  G. Hämmerling,et al.  Quantitative comparison of click beetle and firefly luciferases for in vivo bioluminescence imaging. , 2007, Journal of biomedical optics.

[15]  Sanjiv Sam Gambhir,et al.  Red-shifted Renilla reniformis luciferase variants for imaging in living subjects , 2007, Nature Methods.

[16]  Mudit Gupta,et al.  Imaging chemokine receptor dimerization with firefly luciferase complementation , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[17]  D. Piwnica-Worms,et al.  Rational design of novel red‐shifted BRET pairs: Platforms for real‐time single‐chain protease biosensors , 2009, Biotechnology progress.

[18]  C. Contag,et al.  Overcoming multidrug resistance of small-molecule therapeutics through conjugation with releasable octaarginine transporters , 2008, Proceedings of the National Academy of Sciences.

[19]  S. Gambhir,et al.  Bisdeoxycoelenterazine derivatives for improvement of bioluminescence resonance energy transfer assays. , 2007, Journal of the American Chemical Society.

[20]  Akira Kanno,et al.  Cyclic luciferase for real-time sensing of caspase-3 activities in living mammals. , 2007, Angewandte Chemie.

[21]  Ge Wang,et al.  Overview of bioluminescence tomography--a new molecular imaging modality. , 2008, Frontiers in bioscience : a journal and virtual library.

[22]  J. Mullins,et al.  Photonic detection of bacterial pathogens in living hosts , 1995, Molecular microbiology.

[23]  R. Negrin,et al.  Tissue-Specific Homing and Expansion of Donor NK Cells in Allogeneic Bone Marrow Transplantation1 , 2009, The Journal of Immunology.

[24]  Iannis Aifantis,et al.  CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia , 2009, Nature.

[25]  B. Rice,et al.  In vivo imaging of light-emitting probes. , 2001, Journal of biomedical optics.

[26]  Tony Wyss-Coray,et al.  Bioluminescence imaging of Smad signaling in living mice shows correlation with excitotoxic neurodegeneration , 2006, Proceedings of the National Academy of Sciences.

[27]  Christopher H Contag,et al.  In vivo pathology: seeing with molecular specificity and cellular resolution in the living body. , 2007, Annual review of pathology.

[28]  R. Zare,et al.  Sustained release of drugs dispersed in polymer nanoparticles. , 2008, Angewandte Chemie.

[29]  Fang Li,et al.  Noninvasive imaging and quantification of epidermal growth factor receptor kinase activation in vivo. , 2008, Cancer research.

[30]  Abhijit De,et al.  BRET3: a red‐shifted bioluminescence resonance energy transfer (BRET)‐based integrated platform for imaging protein‐protein interactions from single live cells and living animals , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  Markus Rudin,et al.  Longitudinal and multimodal in vivo imaging of tumor hypoxia and its downstream molecular events , 2009, Proceedings of the National Academy of Sciences.

[32]  S. Gambhir,et al.  BRET-based method for detection of specific RNA species. , 2008, Bioconjugate chemistry.

[33]  C. Contag,et al.  Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. , 2005, Journal of biomedical optics.

[34]  C. Contag,et al.  Real-time analysis of uptake and bioactivatable cleavage of luciferin-transporter conjugates in transgenic reporter mice , 2007, Proceedings of the National Academy of Sciences.

[35]  Frank Fan,et al.  Red-emitting luciferases for bioluminescence reporter and imaging applications. , 2010, Analytical biochemistry.

[36]  H. Blau,et al.  Self-renewal and expansion of single transplanted muscle stem cells , 2008, Nature.

[37]  Y. Umezawa,et al.  An integrated-molecule-format multicolor probe for monitoring multiple activities of a bioactive small molecule. , 2008, ACS chemical biology.

[38]  S. Gambhir,et al.  Optical imaging of Renilla luciferase reporter gene expression in living mice , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Michel Sadelain,et al.  Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase , 2009, Nature Medicine.

[40]  G. Luker,et al.  Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. , 2008, Antiviral research.

[41]  Sanjiv S Gambhir,et al.  An intramolecular folding sensor for imaging estrogen receptor–ligand interactions , 2006, Proceedings of the National Academy of Sciences.

[42]  D. Piwnica-Worms,et al.  Real-time imaging of beta-catenin dynamics in cells and living mice. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Frank Fan,et al.  Engineered luciferases for molecular sensing in living cells. , 2009, Current opinion in biotechnology.

[44]  C. Contag,et al.  Synergistic Antitumor Effects of Immune Cell-Viral Biotherapy , 2006, Science.

[45]  S. Gambhir,et al.  Molecular Imaging of Phosphorylation Events for Drug Development , 2009, Molecular Imaging and Biology.

[46]  Masafumi Oshiro,et al.  Visualizing Gene Expression in Living Mammals Using a Bioluminescent Reporter , 1997, Photochemistry and photobiology.

[47]  T. Riss,et al.  New bioluminogenic substrates for monoamine oxidase assays. , 2006, Journal of the American Chemical Society.

[48]  C. Contag,et al.  Visualizing the kinetics of tumor-cell clearance in living animals. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Jianghong Rao,et al.  In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. , 2009, Bioconjugate chemistry.

[50]  D. Piwnica-Worms,et al.  Proteasome inhibition blocks ligand-induced dynamic processing and internalization of epidermal growth factor receptor via altered receptor ubiquitination and phosphorylation. , 2009, Cancer research.

[51]  R. Weissleder,et al.  Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[52]  R. Blasberg,et al.  Real-Time Imaging of HIF-1α Stabilization and Degradation , 2009, PloS one.

[53]  David Piwnica-Worms,et al.  Bioluminescence imaging of myeloperoxidase activity in vivo , 2009, Nature Medicine.

[54]  Christopher H Contag,et al.  Extracellular Replication of Listeria monocytogenes in the Murine Gall Bladder , 2004, Science.

[55]  Paula D. Bos,et al.  Mediators of vascular remodelling co-opted for sequential steps in lung metastasis , 2007, Nature.

[56]  C. Contag,et al.  Chemical control of protein stability and function in living mice , 2008, Nature Medicine.

[57]  Sung Bae Kim,et al.  Circularly permutated bioluminescent probes for illuminating ligand-activated protein dynamics. , 2008, Bioconjugate chemistry.

[58]  Alnawaz Rehemtulla,et al.  Noninvasive Imaging of Apoptosis and Its Application in Cancer Therapeutics , 2008, Clinical Cancer Research.

[59]  Christopher H Contag,et al.  In vivo analysis of heat-shock-protein-70 induction following pulsed laser irradiation in a transgenic reporter mouse. , 2008, Journal of biomedical optics.

[60]  D. Piwnica-Worms,et al.  Real-time imaging of β-catenin dynamics in cells and living mice , 2007, Proceedings of the National Academy of Sciences.

[61]  Irving L. Weissman,et al.  Shifting foci of hematopoiesis during reconstitution from single stem cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Douglas B. Evans,et al.  Targeted expression of BikDD eradicates pancreatic tumors in noninvasive imaging models. , 2007, Cancer cell.

[63]  Francis J. Doyle,et al.  Intercellular Coupling Confers Robustness against Mutations in the SCN Circadian Clock Network , 2007, Cell.

[64]  Alnawaz Rehemtulla,et al.  Molecular imaging of Akt kinase activity , 2007, Nature Medicine.