Linearity, Non-determinism and Solvability

We study the notion of solvability in the resource calculus, an extension of the λ-calculus modelling resource consumption. Since this calculus is non-deterministic, two different notions of solvability arise, one optimistic (angelical, may) and one pessimistic (demoniac, must). We give a syntactical, operational and logical characterization for the may-solvability and only a partial characterization of the must-solvability. Finally, we discuss the open problem of a complete characterization of the must-solvability.

[1]  Simona Ronchi Della Rocca,et al.  Parametric parameter passing Lambda-calculus , 2004, Inf. Comput..

[2]  Gérard Boudol,et al.  The Lambda-Calculus with Multiplicities (Abstract) , 1993, CONCUR.

[3]  Jean-Louis Krivine,et al.  Lambda-calculus, types and models , 1993, Ellis Horwood series in computers and their applications.

[4]  Mario Coppo,et al.  Principal type-schemes and lambda-calculus semantics , 1980 .

[5]  Paolo Tranquilli,et al.  Intuitionistic differential nets and lambda-calculus , 2011, Theor. Comput. Sci..

[6]  Michele Pagani,et al.  Solvability in Resource Lambda-Calculus , 2010, FoSSaCS.

[7]  Silvio Valentini An elementary proof of strong normalization for intersection types , 2001, Arch. Math. Log..

[8]  Michele Pagani,et al.  A semantic measure of the execution time in linear logic , 2011, Theor. Comput. Sci..

[9]  Assaf J. Kfoury A linearization of the Lambda-calculus and consequences , 2000, J. Log. Comput..

[10]  S. Ronchi Della Rocca,et al.  Parametric parameter passing-calculus , 2002 .

[11]  Laurent Regnier,et al.  The differential lambda-calculus , 2003, Theor. Comput. Sci..

[12]  Ugo de'Liguoro,et al.  Non Deterministic Extensions of Untyped Lambda-Calculus , 1995, Inf. Comput..

[13]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[14]  Pierre-Louis Curien,et al.  A semantics for lambda calculi with resources , 1999, Mathematical Structures in Computer Science.

[15]  Lionel Vaux The algebraic lambda calculus , 2009, Math. Struct. Comput. Sci..

[16]  Joe B. Wells,et al.  A calculus with polymorphic and polyvariant flow types , 2002, J. Funct. Program..

[17]  Harry G. Mairson,et al.  Types, potency, and idempotency: why nonlinearity and amnesia make a type system work , 2004, ICFP '04.

[18]  Luca Paolini,et al.  The Parametric Lambda-Calculus: a Metamodel for Computation , 2004 .

[19]  Antonio Bucciarelli,et al.  Not Enough Points Is Enough , 2007, CSL.

[20]  Michele Pagani,et al.  Parallel Reduction in Resource Lambda-Calculus , 2009, APLAS.

[21]  Thomas Ehrhard,et al.  Uniformity and the Taylor expansion of ordinary lambda-terms , 2008, Theor. Comput. Sci..

[22]  Paolo Tranquilli,et al.  Nets between determinism and nondeterminism , 2009 .

[23]  Thomas Ehrhard,et al.  Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms , 2006, CiE.

[24]  Antonio Bucciarelli,et al.  A relational semantics for parallelism and non-determinism in a functional setting , 2012, Ann. Pure Appl. Log..

[25]  M. Hyland A Syntactic Characterization of the Equality in Some Models for the Lambda Calculus , 1976 .

[26]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[27]  Mariangiola Dezani-Ciancaglini,et al.  Functional Characters of Solvable Terms , 1981, Math. Log. Q..