Sobol' Indices and Shapley Value
暂无分享,去创建一个
[1] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[2] P. Sen,et al. Introduction to bivariate and multivariate analysis , 1981 .
[3] W. Kruskal. Relative Importance by Averaging Over Orderings , 1987 .
[4] L. Shapley. A Value for n-person Games , 1988 .
[5] Ilya M. Sobol,et al. Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .
[6] Harvey M. Wagner,et al. Global Sensitivity Analysis , 1995, Oper. Res..
[7] S. Lipovetsky,et al. Analysis of regression in game theory approach , 2001 .
[8] Eyal Winter. Chapter 53 The shapley value , 2002 .
[9] Thomas J. Santner,et al. The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.
[10] Raphael T. Haftka,et al. Surrogate-based Analysis and Optimization , 2005 .
[11] A. Roth. The Shapley value , 2005, Game Theory.
[12] A. Owen,et al. Estimating Mean Dimensionality of Analysis of Variance Decompositions , 2006 .
[13] Stefano Tarantola,et al. Estimating the approximation error when fixing unessential factors in global sensitivity analysis , 2007, Reliab. Eng. Syst. Saf..
[14] G. Hooker. Generalized Functional ANOVA Diagnostics for High-Dimensional Functions of Dependent Variables , 2007 .
[15] U. Grömping. Estimators of Relative Importance in Linear Regression Based on Variance Decomposition , 2007 .
[16] Saltelli Andrea,et al. Global Sensitivity Analysis: The Primer , 2008 .
[17] C. Prieur,et al. Generalized Hoeffding-Sobol Decomposition for Dependent Variables -Application to Sensitivity Analysis , 2011, 1112.1788.
[18] Art B. Owen. N A ] 8 M ay 2 01 2 Variance components and generalized Sobol ’ indices Art B , 2014 .