Adaptive Flattening for Multidimensional Image Restoration

Whereas most previous works treating color or hyper- spectral image restoration use hybrid filters or data splitting, some new approaches consider multidimensional or tensor signal processing techniques. Tensor processing methods are based on multilinear algebra and are more efficient than 2-D filtering. However, they rely on orthogonal tensor flattening. The aim of this letter is to show that this orthogonal flattening may not be optimal for multidimensional images. We propose a method to adapt the flattening depending on the data set. Our proposed method is based on the estimation of main directions in multidimensional data. For this purpose, we extend the straight line detection algorithm. Multidimensional filtering method HOSVD - (K1,..., KN) is applied along the estimated directions. We also adapt a quadtree partitioning in order to split tensors into homogeneous sub-tensors to keep local characteristics. Considering some examples of color and hyperspectral images, we present some promising results.

[1]  Jia-Shung Wang,et al.  Adaptive post-processing for region-based fractal image compression , 2000, Proceedings DCC 2000. Data Compression Conference.

[2]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[3]  H. Akaike A new look at the statistical model identification , 1974 .

[4]  Hanan Samet,et al.  The Quadtree and Related Hierarchical Data Structures , 1984, CSUR.

[5]  Misha Elena Kilmer,et al.  Kronecker product approximation for preconditioning in three-dimensional imaging applications , 2006, IEEE Transactions on Image Processing.

[6]  Julien Marot,et al.  Contour Estimation by Array Processing Methods , 2006, EURASIP J. Adv. Signal Process..

[7]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[8]  Robert W. Basedow,et al.  HYDICE: an airborne system for hyperspectral imaging , 1993, Defense, Security, and Sensing.

[9]  Qiang Zhang,et al.  Spectral unmixing using nonnegative tensor factorization , 2007, ACM-SE 45.

[10]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[11]  Shen-En Qian,et al.  Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Narendra Ahuja,et al.  Facial expression decomposition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[13]  Hamid K. Aghajan,et al.  Sensor array processing techniques for super resolution multi-line-fitting and straight edge detection , 1993, IEEE Trans. Image Process..

[14]  K. Plataniotis,et al.  Color Image Processing : Methods and Applications , 2006 .

[15]  Damien Muti,et al.  Multidimensional signal processing using lower-rank tensor approximation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[16]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[17]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[18]  Hamid K. Aghajan,et al.  SLIDE: Subspace-Based Line Detection , 1994, IEEE Trans. Pattern Anal. Mach. Intell..