Improved results for scheduling batched parallel jobs by using a generalized analysis framework

We present two improved results for scheduling batched parallel jobs on multiprocessors with mean response time as the performance metric. These results are obtained by using a generalized analysis framework where the response time of the jobs is expressed in two contributing factors that directly impact a scheduler's competitive ratio. Specifically, we show that the scheduler IGDEQ is 3-competitive against the optimal while AGDEQ is 5.24-competitive. These results improve the known competitive ratios of 4 and 10, obtained by Deng et al. and by He et al., respectively. For the common case where no fractional allotments are allowed, we show that slightly larger competitive ratios can be obtained by augmenting the schedulers with the round-robin strategy.

[1]  Xiaotie Deng,et al.  Preemptive Scheduling of Parallel Jobs on Multiprocessors , 1996, SIAM J. Comput..

[2]  Shikharesh Majumdar,et al.  Scheduling in multiprogrammed parallel systems , 1988, SIGMETRICS 1988.

[3]  Yossi Azar,et al.  Minimizing total flow time and total completion time with immediate dispatching , 2003, SPAA.

[4]  Bala Kalyanasundaram,et al.  Minimizing flow time nonclairvoyantly , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[5]  Charles E. Leiserson,et al.  Space-Efficient Scheduling of Multithreaded Computations , 1998, SIAM J. Comput..

[6]  Yossi Azar,et al.  Minimizing Total Flow Time and Total Completion Time with Immediate Dispatching , 2003, SPAA '03.

[7]  Amitabh Sinha,et al.  Non-Clairvoyant Scheduling for Minimizing Mean Slowdown , 2003, Algorithmica.

[8]  David J. Lilja,et al.  Implementing a dynamic processor allocation policy for multiprogrammed parallel applications in the SolarisTM , 2001, Concurr. Comput. Pract. Exp..

[9]  Raj Vaswani,et al.  A dynamic processor allocation policy for multiprogrammed shared-memory multiprocessors , 1993, TOCS.

[10]  Yuxiong He,et al.  Provably Efficient Two-Level Adaptive Scheduling , 2006, JSSPP.

[11]  Jeff Edmonds,et al.  Scheduling in the dark , 1999, STOC '99.

[12]  Luca Becchetti,et al.  Nonclairvoyant scheduling to minimize the total flow time on single and parallel machines , 2004, JACM.

[13]  Klaus Jansen,et al.  Scheduling malleable tasks with precedence constraints , 2012, J. Comput. Syst. Sci..

[14]  Yuxiong He,et al.  Adaptive work-stealing with parallelism feedback , 2008, TOCS.

[15]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[16]  Klaus Jansen,et al.  Linear-Time Approximation Schemes for Scheduling Malleable Parallel Tasks , 1999, SODA '99.

[17]  Xiaotie Deng,et al.  Competitive dynamic multiprocessor allocation for parallel applications , 1995, Proceedings.Seventh IEEE Symposium on Parallel and Distributed Processing.

[18]  Jianer Chen,et al.  A polynomial time approximation scheme for general multiprocessor job scheduling (extended abstract) , 1999, STOC '99.

[19]  Xiaotie Deng,et al.  On Multiprocessor System Scheduling , 1998, J. Comb. Optim..

[20]  Philip S. Yu,et al.  Scheduling parallel tasks to minimize average response time , 1994, SODA '94.

[21]  Rajeev Motwani,et al.  Non-clairvoyant scheduling , 1994, SODA '93.

[22]  Rajeev Motwani,et al.  Approximation techniques for average completion time scheduling , 1997, SODA '97.

[23]  Yuxiong He,et al.  Provably Efficient Online Nonclairvoyant Adaptive Scheduling , 2007, IEEE Transactions on Parallel and Distributed Systems.

[24]  Siddhartha Sen,et al.  Dynamic Processor Allocation for Adaptively Parallel Work-Stealing Jobs , 2004 .

[25]  Guy E. Blelloch,et al.  Space-efficient scheduling of nested parallelism , 1999, TOPL.

[26]  Yuxiong He,et al.  Adaptive Scheduling with Parallelism Feedback , 2006, 2007 IEEE International Parallel and Distributed Processing Symposium.

[27]  Xiaotie Deng,et al.  Non-Clairvoyant Multiprocessor Scheduling of Jobs with Changing Execution Characteristics , 2003, J. Sched..

[28]  Philip S. Yu,et al.  Scheduling parallelizable tasks to minimize average response time , 1994, SPAA '94.

[29]  Denis Trystram,et al.  Efficient approximation algorithms for scheduling malleable tasks , 1999, SPAA '99.

[30]  Anoop Gupta,et al.  Process control and scheduling issues for multiprogrammed shared-memory multiprocessors , 1989, SOSP '89.

[31]  Peiyi Tang,et al.  Dynamic Processor Self-Scheduling for General Parallel Nested Loops , 1987, IEEE Trans. Computers.

[32]  Philip S. Yu,et al.  Smart SMART Bounds for Weighted Response Time Scheduling , 1999, SIAM J. Comput..

[33]  David B. Shmoys,et al.  Scheduling to minimize average completion time: off-line and on-line algorithms , 1996, SODA '96.

[34]  Jesús Labarta,et al.  Improving processor allocation through run-time measured efficiency , 2001, Proceedings 15th International Parallel and Distributed Processing Symposium. IPDPS 2001.

[35]  Guy E. Blelloch,et al.  A provable time and space efficient implementation of NESL , 1996, ICFP '96.

[36]  Edith Schonberg,et al.  Low-overhead scheduling of nested parallelism , 1991, IBM J. Res. Dev..

[37]  Yuxiong He,et al.  An empirical evaluation of work stealing with parallelism feedback , 2006, 26th IEEE International Conference on Distributed Computing Systems (ICDCS'06).

[38]  Julien Robert,et al.  Non-clairvoyant scheduling with precedence constraints , 2008, SODA '08.

[39]  Mary K. Vernon,et al.  The performance of multiprogrammed multiprocessor scheduling algorithms , 1990, SIGMETRICS '90.

[40]  Dror G. Feitelson,et al.  Job Scheduling in Multiprogrammed Parallel Systems , 1997 .

[41]  Prasoon Tiwari,et al.  Scheduling malleable and nonmalleable parallel tasks , 1994, SODA '94.