Generalizing the Convex Hull of a Sample: The R Package alphahull

This paper presents the R package alphahull which implements the α-convex hull and the α-shape of a finite set of points in the plane. These geometric structures provide an informative overview of the shape and properties of the point set. Unlike the convex hull, the α-convex hull and the α-shape are able to reconstruct non-convex sets. This flexibility make them specially useful in set estimation. Since the implementation is based on the intimate relation of theses constructs with Delaunay triangulations, the R package alphahull also includes functions to compute Voronoi and Delaunay tesselations. The usefulness of the package is illustrated with two small simulation studies on boundary length estimation.

[1]  A. Tsybakov,et al.  Minimax theory of image reconstruction , 1993 .

[2]  L. Dümbgen,et al.  RATES OF CONVERGENCE FOR RANDOM APPROXIMATIONS OF CONVEX SETS , 1996 .

[3]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[4]  Alberto Rodríguez Casal,et al.  Set estimation under convexity type assumptions , 2007 .

[5]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[6]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[7]  Robert J. Renka,et al.  Algorithm 751: TRIPACK: a constrained two-dimensional Delaunay triangulation package , 1996, TOMS.

[8]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[9]  Cruz Orive,et al.  Stereology: meeting point of integral geometry, probability, and statistics. In memory of Professor Luis A. Santaló (1911-2001) , 2002 .

[10]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[11]  A. Cuevas,et al.  A plug-in approach to support estimation , 1997 .

[12]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[13]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[14]  A. Rényi,et al.  über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .

[15]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[16]  D. T. Lee,et al.  Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.

[17]  L. Devroye,et al.  Detection of Abnormal Behavior Via Nonparametric Estimation of the Support , 1980 .

[18]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[19]  John D. Radke,et al.  On the Shape of a Set of Points , 1988 .

[20]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[21]  Guenther Walther,et al.  On a generalization of Blaschke's Rolling Theorem and the smoothing of surfaces , 1999 .

[22]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[23]  A. Rényi,et al.  über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .

[24]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[25]  H. Bräker,et al.  On the area and perimeter of a random convex hull in a bounded convex set , 1998 .

[26]  Rolf Schneider,et al.  Random approximation of convex sets * , 1988 .

[27]  A. Cuevas,et al.  A nonparametric approach to the estimation of lengths and surface areas , 2007, 0708.2180.

[28]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[29]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.