Generalizing the Convex Hull of a Sample: The R Package alphahull
暂无分享,去创建一个
[1] A. Tsybakov,et al. Minimax theory of image reconstruction , 1993 .
[2] L. Dümbgen,et al. RATES OF CONVERGENCE FOR RANDOM APPROXIMATIONS OF CONVEX SETS , 1996 .
[3] David G. Kirkpatrick,et al. On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.
[4] Alberto Rodríguez Casal,et al. Set estimation under convexity type assumptions , 2007 .
[5] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[6] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[7] Robert J. Renka,et al. Algorithm 751: TRIPACK: a constrained two-dimensional Delaunay triangulation package , 1996, TOMS.
[8] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[9] Cruz Orive,et al. Stereology: meeting point of integral geometry, probability, and statistics. In memory of Professor Luis A. Santaló (1911-2001) , 2002 .
[10] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[11] A. Cuevas,et al. A plug-in approach to support estimation , 1997 .
[12] G. A. Edgar. Measure, Topology, and Fractal Geometry , 1990 .
[13] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .
[14] A. Rényi,et al. über die konvexe Hülle von n zufällig gewählten Punkten , 1963 .
[15] Robin Sibson,et al. Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..
[16] D. T. Lee,et al. Two algorithms for constructing a Delaunay triangulation , 1980, International Journal of Computer & Information Sciences.
[17] L. Devroye,et al. Detection of Abnormal Behavior Via Nonparametric Estimation of the Support , 1980 .
[18] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[19] John D. Radke,et al. On the Shape of a Set of Points , 1988 .
[20] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[21] Guenther Walther,et al. On a generalization of Blaschke's Rolling Theorem and the smoothing of surfaces , 1999 .
[22] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[23] A. Rényi,et al. über die konvexe Hülle von n zufÄllig gewÄhlten Punkten. II , 1964 .
[24] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[25] H. Bräker,et al. On the area and perimeter of a random convex hull in a bounded convex set , 1998 .
[26] Rolf Schneider,et al. Random approximation of convex sets * , 1988 .
[27] A. Cuevas,et al. A nonparametric approach to the estimation of lengths and surface areas , 2007, 0708.2180.
[28] C. Lawson. Software for C1 Surface Interpolation , 1977 .
[29] Herbert Edelsbrunner,et al. Three-dimensional alpha shapes , 1992, VVS.