The Fréchet functional equation with application to the stability of certain operators
暂无分享,去创建一个
Ioan Rasa | Dorian Popa | I. Raşa | D. Popa
[1] Dorian Popa,et al. On the stability of the linear differential equation of higher order with constant coefficients , 2010, Appl. Math. Comput..
[2] F. Altomare,et al. On Bernstein–Schnabl Operators on the Unit Interval , 2008 .
[3] Wlodzimierz Fechner,et al. Stability of a composite functional equation related to idempotent mappings , 2011, J. Approx. Theory.
[4] P. K. Sahoo,et al. Mean Value Theorems and Functional Equations , 1998 .
[5] Ioan Raşa,et al. On the Hyers–Ulam stability of the linear differential equation , 2011 .
[6] R. Agarwal,et al. Stability of functional equations in single variable , 2003 .
[7] Kenneth J. Palmer,et al. Shadowing in Dynamical Systems , 2000 .
[8] G. Pólya,et al. Aufgaben und Lehrsätze aus der Analysis: Erster Band: Reihen · Integralrechnung Funktionentheorie , 1925 .
[9] Jacek Chudziak,et al. Approximate solutions of the Golab-Schinzel equation , 2005, J. Approx. Theory.
[10] Hiroyuki Takagi,et al. ESSENTIAL NORMS AND STABILITY CONSTANTS OF WEIGHTED COMPOSITION OPERATORS ON C(X) , 2003 .
[11] J. M. Almira,et al. On solutions of the Fréchet functional equation , 2007 .
[12] B Démidovitch,et al. Eléments de calcul numérique , 1973 .
[13] M. Kuczma. Functional equations in a single variable , 1968 .
[14] T. Miura,et al. HYERS-ULAM STABILITY OF A CLOSED OPERATOR IN A HILBERT SPACE , 2006 .
[15] George Isac,et al. Stability of Functional Equations in Several Variables , 1998 .