On the "strict homeostasis" assumption in ecological stoichiometry

[1]  T. Andersen Pelagic Nutrient Cycles: Herbivores as Sources and Sinks , 2011 .

[2]  Hao Wang,et al.  Global analysis of a stoichiometric producer–grazer model with Holling type functional responses , 2011, Journal of mathematical biology.

[3]  R. Sterner,et al.  Diet Mixing: Do Animals Integrate Growth or Resources across Temporal Heterogeneity? , 2010, The American Naturalist.

[4]  P. Fink,et al.  To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs , 2010 .

[5]  Y. Kuang,et al.  Daphnia species invasion, competitive exclusion, and chaotic coexistence , 2009 .

[6]  Hao Wang,et al.  Dynamics of a mechanistically derived stoichiometric producer-grazer model , 2008, Journal of biological dynamics.

[7]  Hao Wang,et al.  Dynamics of Stoichiometric Bacteria-Algae Interactions in the Epilimnion , 2007, SIAM J. Appl. Math..

[8]  K. Mulder Modeling the dynamics of nutrient limited consumer populations using constant elasticity production functions , 2007 .

[9]  B. Deng,et al.  Competitive coexistence in stoichiometric chaos. , 2007, Chaos.

[10]  K. Mulder,et al.  Organismal stoichiometry and the adaptive advantage of variable nutrient use and production efficiency in Daphnia , 2007 .

[11]  J. Elser,et al.  Biological stoichiometry of Daphnia growth: An ecophysiological test of the growth rate hypothesis , 2004 .

[12]  James P Grover,et al.  The Impact of Variable Stoichiometry on Predator‐Prey Interactions: A Multinutrient Approach , 2003, The American Naturalist.

[13]  Sebastiaan A.L.M. Kooijman,et al.  Stoichiometric food quality and herbivore dynamics , 2001 .

[14]  Yang Kuang,et al.  Stoichiometry in producer-grazer systems: Linking energy flow with element cycling , 2000, Bulletin of mathematical biology.

[15]  James J. Elser,et al.  THE STOICHIOMETRY OF CONSUMER‐DRIVEN NUTRIENT RECYCLING: THEORY, OBSERVATIONS, AND CONSEQUENCES , 1999 .

[16]  Ramesh D. Gulati,et al.  Effects of phosphorus‐deficient diets on the carbon and phosphorus balance of Daphnia magna , 1998 .

[17]  Dag O. Hessen,et al.  A model approach to planktonic stoichiometry and consumer‐resource stability , 1997 .

[18]  G. Wolkowicz The theory of the chemostat: Dynamics of microbial competition , 1996 .

[19]  Paul Waltman,et al.  The Theory of the Chemostat: Dynamics of Microbial Competition , 1995 .

[20]  M. R. Droop,et al.  The nutrient status of algal cells in continuous culture , 1974, Journal of the Marine Biological Association of the United Kingdom.

[21]  F. T.,et al.  Phytoplankton-bacteria interactions : an apparent paradox ? Analysis of a model system with both competition and commensalism , 2006 .

[22]  G. Bratbak,et al.  Phytoplankton-bacteria interactions: an apparant paradox? Analysis of a model system with both competition and commensalism , 1985 .