Finite-Time Stabilization of Nonlinear Dynamical Systems via Control Vector Lyapunov Functions

Finite-time stability involves dynamical systems whose trajectories converge to an equilibrium state in finite time. Since finite-time convergence implies nonuniqueness of system solutions in reverse time, such systems possess non-Lipschitzian dynamics. Sufficient conditions for finite-time stability have been developed in the literature using holder continuous Lyapunov functions. In this paper, we develop a general framework for finite-time stability analysis based on vector Lyapunov functions. Specifically, we construct a vector comparison system whose solution is finite-time stable and relate this finite-time stability property to the stability properties of a nonlinear dynamical system using a vector comparison principle. Furthermore, we design a universal decentralized finite-time stabilizer for large-scale dynamical systems that is robust against full modeling uncertainty.

[1]  A. F. Filippov Equations with the Right-Hand Side Continuous in x and Discontinuous in t , 1988 .

[2]  R. Bellman Vector Lyanpunov Functions , 1962 .

[3]  Dennis S. Bernstein,et al.  Geometric homogeneity with applications to finite-time stability , 2005, Math. Control. Signals Syst..

[4]  Wei Lin,et al.  A continuous feedback approach to global strong stabilization of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[5]  M. Kawski Stabilization of nonlinear systems in the plane , 1989 .

[6]  S. Bhat,et al.  Continuous finite-time stabilization of the translational and rotational double integrators , 1998, IEEE Trans. Autom. Control..

[7]  Wassim M. Haddad,et al.  On the stability and control of nonlinear dynamical systems via vector Lyapunov functions , 2006, IEEE Transactions on Automatic Control.

[8]  T. Ważewski,et al.  Systèmes de équations et des inégalités différentielles ordinaires aux deuxièmes membres monotones et leurs application , 1950 .

[9]  Jie Huang,et al.  On an output feedback finite-time stabilisation problem , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[10]  Jie Huang,et al.  On an output feedback finite-time stabilization problem , 2001, IEEE Trans. Autom. Control..

[11]  V. Lakshmikantham,et al.  Uniqueness and nonuniqueness criteria for ordinary differential equations , 1993 .

[12]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[13]  E. Kamke Zur Theorie der Systeme gewöhnlicher Differentialgleichungen. II. , 1932 .

[14]  F. Culick,et al.  On the Existence and Stability of Limit Cycles forLongitudinal Acoustic Modes in a Combustion Chamber , 1986 .

[15]  E. P. Ryan Singular optimal controls for second-order saturating systems , 1979 .

[16]  Yiguang Hong,et al.  Finite-time stabilization and stabilizability of a class of controllable systems , 2002, Syst. Control. Lett..

[17]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[18]  W. Haddad,et al.  Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems , 2005 .

[19]  Fred E. C. Culick,et al.  Nonlinear behavior of acoustic waves in combustion chambers. I, II. [stability in solid propellant rocket engine and T burner , 1976 .

[20]  E. Ryan Finite-time stabilization of uncertain nonlinear planar systems , 1991 .

[21]  V. Lakshmikantham,et al.  Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems , 1991 .

[22]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[23]  Dragoslav D. Šiljak,et al.  Large-Scale Dynamic Systems: Stability and Structure , 1978 .

[24]  C. C. Jahnke,et al.  Application of dynamical systems theory to nonlinear combustion instabilities , 1994 .

[25]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[26]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[27]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[28]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[29]  V. Haimo Finite time controllers , 1986 .

[30]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[31]  A. T. Fuller,et al.  Optimization of some Non-linear Control Systems by means of Bellmans' Equation and Dimensional Analysis† , 1966 .

[32]  Fred E. C. Culick,et al.  The Two-Mode Approximation to Nonlinear Acoustics in Combustion Chambers I. Exact Solution for Second Order Acoustics , 1989 .