Mesoscale modeling in electrochemical devices—A critical perspective

Abstract Electrochemical energy systems, such as batteries and fuel cells, are being developed for applications ranging from portable devices and electric vehicles to large-scale grid storage. These advanced energy conversion and storage technologies will be a critical aspect of a sustainable energy future and promise to provide cleaner, more efficient energy. Computational modeling at various scales from nanoscale ab initio modeling to macroscale system and controls level modeling, has been a central part of the electrochemical energy research. Much of the complex interactions due to the electrochemistry coupled transport phenomena occur at the interfaces and within the porous electrode microstructures. This is often referred to as the mesoscale and plays a critical role in the operation and efficiency of electrochemical devices. In this critical perspective, we discuss the state-of-the-art, challenges and path forward in mesoscale modeling of electrochemical energy systems and their application to various design and operational issues in solid oxide fuel cells, polymer electrolyte membrane fuel cells, lithium ion batteries and metal-air batteries. Particular focus is given to particle-based methods and fine-scale computational fluid dynamics based direct numerical simulation techniques, along with the challenges and advantages of these methods. Notable results from mesoscale modeling are presented along with discussions of the advantages, disadvantages and challenges facing mesoscale model development. This in-depth perspective is envisioned to serve as a primer to the critical role mesoscale modeling is poised to play in advancing the science and engineering of electrochemical energy systems.

[1]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[2]  Yuwen Zhang,et al.  Improving wettability and preventing Li-ion batteries from thermal runaway using microchannels , 2018 .

[3]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Joe J. Monaghan,et al.  SPH particle boundary forces for arbitrary boundaries , 2009, Comput. Phys. Commun..

[5]  D. Wheeler,et al.  Morphology of nanoporous carbon-binder domains in Li-ion batteries—A FIB-SEM study , 2015 .

[6]  Victor E. Brunini,et al.  Mesoscale Effective Property Simulations Incorporating Conductive Binder , 2017 .

[7]  Y. K. Chen-Wiegart,et al.  3D analysis of a LiCoO2–Li(Ni1/3Mn1/3Co1/3)O2 Li-ion battery positive electrode using x-ray nano-tomography , 2013 .

[8]  P. Shearing,et al.  3D morphological evolution of Li-ion battery negative electrode LiVO2 during oxidation using X-ray nano-tomography , 2012 .

[9]  Lanny D. Schmidt,et al.  The engineering of chemical reactions , 1997 .

[10]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[11]  A. Sastry,et al.  Particle Compression and Conductivity in Li-Ion Anodes with Graphite Additives , 2004 .

[12]  Ali Ghorbani Kashkooli,et al.  Morphological and Electrochemical Characterization of Nanostructured Li4Ti5O12Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography , 2017 .

[13]  N. Shikazono,et al.  Three-dimensional numerical simulation of solid oxide fuel cell cathode based on lattice Boltzmann method with sub-grid scale models , 2017 .

[14]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[15]  David R. Noble,et al.  Editors' Choice—Mesoscale Analysis of Conductive Binder Domain Morphology in Lithium-Ion Battery Electrodes , 2018 .

[16]  V. Wood,et al.  Transport in Lithium Ion Batteries: Reconciling Impedance and Structural Analysis , 2017 .

[17]  W. Craig Carter,et al.  Microstructural Modeling and Design of Rechargeable Lithium-Ion Batteries , 2005 .

[18]  Qinjun Kang,et al.  Mesoscopic modeling of two-phase behavior and flooding phenomena in polymer electrolyte fuel cells , 2009 .

[19]  Martin Ebner,et al.  Tortuosity Anisotropy in Lithium‐Ion Battery Electrodes , 2014 .

[20]  Chen Yang,et al.  Telescopic projective Adams multiscale modeling of electrochemical reactions in tubular solid oxide fuel cells , 2016, Comput. Chem. Eng..

[21]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[22]  P. Mukherjee,et al.  Precipitation–Microstructure Interactions in the Li-Sulfur Battery Electrode , 2017 .

[23]  W. Shyy,et al.  Effective Transport Properties of LiMn2O4 Electrode via Particle-Scale Modeling , 2011 .

[24]  S. H. Kim,et al.  Reconstruction and Effective Transport Properties of the Catalyst Layer in PEM Fuel Cells , 2009 .

[25]  Matteo Antuono,et al.  Theoretical analysis and numerical verification of the consistency of viscous smoothed-particle-hydrodynamics formulations in simulating free-surface flows. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[27]  K. Yuan,et al.  Suppressing Dendritic Lithium Formation Using Porous Media in Lithium Metal-Based Batteries. , 2018, Nano letters.

[28]  Qisu Zou,et al.  Evaluation of Two Lattice Boltzmann Models for Multiphase Flows , 1997 .

[29]  D. Wheeler,et al.  Three‐Phase Multiscale Modeling of a LiCoO2 Cathode: Combining the Advantages of FIB–SEM Imaging and X‐Ray Tomography , 2015 .

[30]  Zhigang Suo,et al.  Lithium-assisted Plastic Deformation of Silicon Electrodes in Lithium-ion Batteries: a First-principles Theoretical Study , 2022 .

[31]  P. Mukherjee PORE-SCALE MODELING AND ANALYSIS OF THE POLYMER ELECTROLYTE FUEL CELL CATALYST LAYER , 2007 .

[32]  Shan,et al.  Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Chien‐Fan Chen,et al.  Probing Impedance and Microstructure Evolution in Lithium–Sulfur Battery Electrodes , 2017 .

[34]  P. Mukherjee,et al.  Transport-Geometry Interactions in Li-Ion Cathode Materials Imaged Using X-ray Nanotomography , 2016 .

[35]  L. Chick,et al.  Surface Diffusion and Concentration Polarization on Oxide-Supported Metal Electrocatalyst Particles , 2003 .

[36]  Kim F. Ferris,et al.  Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries , 2016 .

[37]  K. Smith,et al.  Electrochemistry Coupled Mesoscale Complexations in Electrodes Lead to Thermo-Electrochemical Extremes. , 2018, ACS applied materials & interfaces.

[38]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[39]  B. Sundén,et al.  Modeling of micro/meso-scale reactive transport phenomena in catalyst layers of proton exchange membrane fuel cells , 2012 .

[40]  Chien‐Fan Chen,et al.  Probing the Role of Electrode Microstructure in the Lithium-Ion Battery Thermal Behavior , 2017 .

[41]  F. Marone,et al.  X‐Ray Tomography of Porous, Transition Metal Oxide Based Lithium Ion Battery Electrodes , 2013 .

[42]  W. Bessler,et al.  A new framework for physically based modeling of solid oxide fuel cells , 2007 .

[43]  F. Jiang,et al.  Simulated annealing reconstruction and characterization of the three-dimensional microstructure of a LiCoO2 Lithium-ion battery cathode , 2013 .

[44]  James B. Robinson,et al.  In-operando high-speed tomography of lithium-ion batteries during thermal runaway , 2015, Nature Communications.

[45]  W. Bennett,et al.  Hierarchically porous graphene as a lithium-air battery electrode. , 2011, Nano letters.

[46]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[47]  Emily M. Ryan,et al.  Modeling Solid Oxide Fuel Cells from the Macroscale to the Nanoscale , 2012 .

[48]  G. Ehrlich,et al.  The beginnings of surface diffusion studies , 2005 .

[49]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[50]  Emmanuel Resch NUMERICAL AND EXPERIMENTAL CHARACTERISATION OF CONVECTIVE TRANSPORT IN SOLID OXIDE FUEL CELLS , 2008 .

[51]  Andrew M. Colclasure,et al.  Resolving the discrepancy in tortuosity factor estimation for Li-Ion battery electrodes through micro-macro modeling and experiment , 2018 .

[52]  Chao-Yang Wang,et al.  Fundamental models for fuel cell engineering. , 2004, Chemical reviews.

[53]  Sassi Ben Nasrallah,et al.  Numerical simulation of droplet dynamics in a proton exchange membrane (PEMFC) fuel cell micro-channel , 2015 .

[54]  Zhiguo Qu,et al.  A microscopic investigation of ion and electron transport in lithium-ion battery porous electrodes using the lattice Boltzmann method , 2017 .

[55]  P. Withers X-ray nanotomography , 2007 .

[56]  Shawn Litster,et al.  Resolving Electrode Morphology's Impact on Platinum Group Metal-Free Cathode Performance Using Nano-CT of 3D Hierarchical Pore and Ionomer Distribution. , 2016, ACS applied materials & interfaces.

[57]  Jinwang Tan,et al.  Computational study of electro-convection effects on dendrite growth in batteries , 2016 .

[58]  A. Amicarelli,et al.  A 3D fully Lagrangian Smoothed Particle Hydrodynamics model with both volume and surface discrete elements , 2013 .

[59]  Jun Xu,et al.  Integrated computation model of lithium-ion battery subject to nail penetration , 2016 .

[60]  Anthony D. Santamaria,et al.  Effect of channel length on interdigitated flow-field PEMFC performance: A computational and experimental study , 2013 .

[61]  S. Risse,et al.  Correlating Morphological Evolution of Li Electrodes with Degrading Electrochemical Performance of Li/LiCoO2 and Li/S Battery Systems: Investigated by Synchrotron X-ray Phase Contrast Tomography , 2018 .

[62]  G. Doolen,et al.  Diffusion in a multicomponent lattice Boltzmann equation model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[63]  Ellen Ivers-Tiffée,et al.  Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling , 2011 .

[64]  Shaoyang He,et al.  LBM prediction of effective thermal conductivity of lithium-ion battery graphite anode , 2017 .

[65]  J. Tour,et al.  Ultrafast Charging High Capacity Asphalt-Lithium Metal Batteries. , 2017, ACS nano.

[66]  Robert J. Kee,et al.  A Computational Model of the Mechanical Behavior within Reconstructed LixCoO2 Li-ion Battery Cathode Particles , 2014 .

[67]  Ann Marie Sastry,et al.  Two-Dimensional vs. Three-Dimensional Clustering and Percolation in Fields of Overlapping Ellipsoids , 2004 .

[68]  P. Pietsch,et al.  X-Ray Tomography for Lithium Ion Battery Research: A Practical Guide , 2017 .

[69]  Robert J. Kee,et al.  Effects of three-dimensional cathode microstructure on the performance of lithium-ion battery cathodes , 2013 .

[70]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[71]  Partha P. Mukherjee,et al.  Direct Numerical Simulation Modeling of Bilayer Cathode Catalyst Layers in Polymer Electrolyte Fuel Cells , 2007 .

[72]  John R. Miller,et al.  Charge Transfer on the Nanoscale: Current Status , 2003 .

[73]  P. Español,et al.  Perspective: Dissipative particle dynamics. , 2016, The Journal of chemical physics.

[74]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[75]  S. Kim,et al.  A multiscale approach to accelerate pore-scale simulation of porous electrodes , 2017 .

[76]  J. Monaghan Smoothed Particle Hydrodynamics and Its Diverse Applications , 2012 .

[77]  Guy Marlair,et al.  Safety focused modeling of lithium-ion batteries: A review , 2016 .

[78]  R. Kee,et al.  Modeling Distributed Charge-Transfer Processes in SOFC Membrane Electrode Assemblies , 2008 .

[79]  D. Stephenson,et al.  Modeling 3D Microstructure and Ion Transport in Porous Li-Ion Battery Electrodes , 2011 .

[80]  Peng Bai,et al.  Charge transfer kinetics at the solid–solid interface in porous electrodes , 2014, Nature Communications.

[81]  B. Yan,et al.  Three Dimensional Simulation of Galvanostatic Discharge of LiCoO2 Cathode Based on X-ray Nano-CT Images , 2012 .

[82]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[83]  P. Mukherjee,et al.  Microstructural analysis of mass transport phenomena in gas diffusion media for high current density operation in PEM fuel cells , 2015 .

[84]  Timothy D. Scheibe,et al.  Simulations of reactive transport and precipitation with smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[85]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[86]  J. Monaghan,et al.  Solidification using smoothed particle hydrodynamics , 2005 .

[87]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[88]  Bengt Sundén,et al.  Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach , 2016 .

[89]  Qinjun Kang,et al.  Displacement of a two-dimensional immiscible droplet in a channel , 2002 .

[90]  J. Newman,et al.  Thermal modeling of the lithium/polymer battery. II: Temperature profiles in a cell stack , 1995 .

[91]  Haoshen Zhou,et al.  Electrochemical performance and reaction mechanism of all-solid-state lithium–air batteries composed of lithium, Li1+xAlyGe2−y(PO4)3 solid electrolyte and carbon nanotube air electrode , 2012 .

[92]  Chao-Yang Wang,et al.  Computational battery dynamics (CBD)—electrochemical/thermal coupled modeling and multi-scale modeling , 2002 .

[93]  S. Paddison,et al.  A comparative study of the hydrated morphologies of perfluorosulfonic acid fuel cell membranes with mesoscopic simulations , 2008 .

[94]  William M. Harris,et al.  Three-dimensional microstructural imaging methods for energy materials. , 2013, Physical chemistry chemical physics : PCCP.

[95]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[96]  Qinjun Kang,et al.  Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective , 2011 .

[97]  Jinwang Tan,et al.  Structured electrolytes to suppress dendrite growth in high energy density batteries , 2016 .

[98]  Q. Horn,et al.  The Effect of Microstructure on the Galvanostatic Discharge of Graphite Anode Electrodes in LiCoO2-Based Rocking-Chair Rechargeable Batteries , 2009 .

[99]  Mayken Espinoza Andaluz,et al.  Analysis of Porosity and Tortuosity in a 2D Selected Region of Solid Oxide Fuel Cell Cathode Using the Lattice Boltzmann Method , 2015 .

[100]  Pallab Barai,et al.  Mechano-Electrochemical Interaction Gives Rise to Strain Relaxation in Sn Electrodes , 2016 .

[101]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[102]  Robert J. Kee,et al.  Three-dimensional particle-resolved models of Li-ion batteries to assist the evaluation of empirical parameters in one-dimensional models , 2012 .

[103]  Petr Schneider,et al.  Dynamic transport of multicomponent mixtures of gases in porous solids , 1995 .

[104]  Xin Sun,et al.  A damage model for degradation in the electrodes of solid oxide fuel cells: Modeling the effects of sulfur and antimony in the anode , 2012 .

[105]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[106]  Andreas Wiegmann,et al.  Analysis of Long-Range Interaction in Lithium-Ion Battery Electrodes , 2013 .

[107]  Yet-Ming Chiang,et al.  Spatially Resolved Modeling of Microstructurally Complex Battery Architectures , 2007 .

[108]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[109]  Fuqiang Liu,et al.  Process based reconstruction and simulation of a three-dimensional fuel cell catalyst layer , 2010 .

[110]  K. Smith,et al.  Secondary-Phase Stochastics in Lithium-Ion Battery Electrodes. , 2018, ACS applied materials & interfaces.

[111]  G. Voth,et al.  Mesoscale Simulation of Proton Transport in Proton Exchange Membranes , 2012 .

[112]  Shiyi Chen,et al.  On the three-dimensional Rayleigh–Taylor instability , 1999 .

[113]  Ann Marie Sastry,et al.  Mesoscale Modeling of a Li-Ion Polymer Cell , 2007 .

[114]  Oluwadamilola O. Taiwo,et al.  Investigating the evolving microstructure of lithium metal electrodes in 3D using X-ray computed tomography. , 2017, Physical chemistry chemical physics : PCCP.

[115]  Alexandre M. Tartakovsky,et al.  Simulation of Unsaturated Flow in Complex Fractures Using Smoothed Particle Hydrodynamics , 2005 .

[116]  Peng Bai,et al.  Simple formula for Marcus–Hush–Chidsey kinetics , 2014, 1407.5370.

[117]  Gang Qiu,et al.  3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery , 2012 .

[118]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[119]  C. Pals,et al.  Thermal modeling of the lithium/polymer battery , 1994 .

[120]  Yixiang Shi,et al.  Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion , 2007 .

[121]  F. Jiang,et al.  LBM prediction of effective electric and species transport properties of lithium-ion battery graphite anode , 2016 .

[122]  Kevin N. Wood,et al.  Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy , 2016, ACS central science.

[123]  Han Xu,et al.  Pore scale investigation of gaseous mixture flow in porous anode of solid oxide fuel cell , 2016 .

[124]  Chaoyang Wang,et al.  Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach , 2007 .

[125]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[126]  Lorenz Holzer,et al.  Review of FIB tomography , 2012 .

[127]  J. Z. Zhu,et al.  The finite element method , 1977 .

[128]  P. Mukherjee,et al.  Modeling and Simulation of Battery Systems , 2011 .

[129]  W. Chiu,et al.  Lattice Boltzmann method for continuum, multi-component mass diffusion in complex 2D geometries , 2007 .

[130]  D. Jeon,et al.  Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method , 2015 .

[131]  S. Paddison,et al.  Mesoscale modeling of hydrated morphologies of 3M perfluorosulfonic acid-based fuel cell electrolytes. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[132]  A. Sastry,et al.  Compression of Packed Particulate Systems: Simulations and Experiments in Graphitic Li-ion Anodes , 2006 .

[133]  Gen Inoue,et al.  Effect of porous structure of catalyst layer on effective oxygen diffusion coefficient in polymer electrolyte fuel cell , 2016 .

[134]  Nigel P. Brandon,et al.  Local Tortuosity Inhomogeneities in a Lithium Battery Composite Electrode , 2011 .

[135]  Partha P. Mukherjee,et al.  Stochastic Microstructure Reconstruction and Direct Numerical Simulation of the PEFC Catalyst Layer , 2006 .

[136]  K. B. Oldham,et al.  Fundamentals of electrochemical science , 1993 .

[137]  Wilson K. S. Chiu,et al.  A review of modeling and simulation techniques across the length scales for the solid oxide fuel cell , 2012 .

[138]  Cristina H. Amon,et al.  Pore-scale modeling of the reactive transport of chromium in the cathode of a solid oxide fuel cell , 2011 .

[139]  Z. Jiao,et al.  Evaluation of nickel-yttria stabilized zirconia anode degradation during discharge operation and redox cycles operation by electrochemical calculation , 2016 .

[140]  A. Weber,et al.  Modeling transport in polymer-electrolyte fuel cells. , 2004, Chemical reviews.

[141]  D. Wheeler,et al.  Experiment and simulation of the fabrication process of lithium-ion battery cathodes for determining microstructure and mechanical properties , 2016 .

[142]  E. A. Mason,et al.  Gas Transport in Porous Media: The Dusty-Gas Model , 1983 .

[143]  G. Dorenbos Pore network design: DPD-Monte Carlo study of solvent diffusion dependence on side chain location , 2014 .

[144]  W. Tao,et al.  Pore-scale study of multiphase reactive transport in fibrous electrodes of vanadium redox flow batteries , 2017 .

[145]  Oluwadamilola O. Taiwo,et al.  Investigation of cycling-induced microstructural degradation in silicon-based electrodes in lithium-ion batteries using X-ray nanotomography , 2017 .

[146]  Takemi Chikahisa,et al.  Numerical simulation of liquid water and gas flow in a channel and a simplified gas diffusion layer model of polymer electrolyte membrane fuel cells using the lattice Boltzmann method , 2009 .

[147]  Nigel P. Brandon,et al.  Investigation of lithium-ion polymer battery cell failure using X-ray computed tomography , 2011 .

[148]  P. Mukherjee,et al.  Probing spatial coupling of resistive modes in porous intercalation electrodes through impedance spectroscopy. , 2019, Physical chemistry chemical physics : PCCP.

[149]  F. Jiang,et al.  Smoothed particle hydrodynamics prediction of effective transport coefficients of lithium-ion battery electrodes , 2014 .

[150]  A. Salehi,et al.  Stochastic reconstruction and electrical transport studies of porous cathode of Li-ion batteries , 2012 .

[151]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[152]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[153]  D. Wheeler,et al.  FIB/SEM-based calculation of tortuosity in a porous LiCoO2 cathode for a Li-ion battery , 2013 .

[154]  Moses Ender,et al.  Quantitative Characterization of LiFePO4 Cathodes Reconstructed by FIB/SEM Tomography , 2012 .

[155]  M. Bazant,et al.  Simple formula for asymmetric Marcus–Hush kinetics , 2015 .

[156]  D. Jeon,et al.  Lattice Boltzmann Simulation for Electrolyte Transport in Porous Electrode of Lithium Ion Batteries , 2013 .