Some Nonoverlapping Domain Decomposition Methods

The purpose of this paper is to give a unified investigation of a class of nonoverlapping domain decomposition methods for solving second-order elliptic problems in two and three dimensions. The methods under scrutiny fall into two major categories: the substructuring--type methods and the Neumann--Neumann-type methods. The basic framework used for analysis is the parallel subspace correction method or additive Schwarz method, and other technical tools include local-global and global-local techniques. The analyses for both two- and three-dimensional cases are carried out simultaneously. Some internal relationships between various algorithms are observed and several new variants of the algorithms are also derived.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  Tony F. Chan,et al.  Efficient Variants of the Vertex Space Domain Decomposition Algorithm , 1994, SIAM J. Sci. Comput..

[3]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[4]  R. Glowinski,et al.  Variational formulation and algorithm for trace operation in domain decomposition calculations , 1988 .

[5]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[6]  O. Widlund,et al.  Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .

[7]  P. Tallec,et al.  Domain decomposition methods for large linearly elliptic three-dimensional problems , 1991 .

[8]  Charbel Farhat,et al.  An Unconventional Domain Decomposition Method for an Efficient Parallel Solution of Large-Scale Finite Element Systems , 1992, SIAM J. Sci. Comput..

[9]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[10]  Olof B. Widlund,et al.  A Domain Decomposition Algorithm Using a Hierarchical Basis , 1990, SIAM J. Sci. Comput..

[11]  Jinchao Xu,et al.  Counterexamples concerning a weighted L^2 projection , 1991 .

[12]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[13]  J. Mandel Balancing domain decomposition , 1993 .

[14]  O. Widlund Domain Decomposition Algorithms , 1993 .

[15]  Patrick Le Tallec,et al.  A Neumann--Neumann Domain Decomposition Algorithm for Solving Plate and Shell Problems , 1995 .

[16]  Marian Brezina,et al.  Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..

[17]  Barry F. Smith,et al.  Domain decomposition algorithms for the partial differential equations of linear elasticity , 1990 .

[18]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[19]  Barry F. Smith A domain decomposition algorithm for elliptic problems in three dimensions , 1990 .

[20]  J. Mandel,et al.  Balancing domain decomposition for mixed finite elements , 1995 .

[21]  R. Glowinski,et al.  Third International Symposium on Domain Decomposition Methods for Partial Differential Equations , 1990 .

[22]  Barry Smith,et al.  An Optimal Domain Decomposition Preconditioner for the Finite Element Solution of Linear Elasticity Problems , 2017, SIAM J. Sci. Comput..

[23]  Jinchao Xu,et al.  Preconditioning the Poincaré-Steklov operator by using Green's function , 1997, Math. Comput..

[24]  H. Schwarz Gesammelte mathematische Abhandlungen , 1970 .

[25]  David E Keyes,et al.  Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations , 1992 .

[26]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[27]  Jan Mandel,et al.  Two-level domain decomposition preconditioning for the p-version finite element method in three dimensions , 1990 .

[28]  J. Pasciak,et al.  The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms , 1991 .

[29]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[30]  Joseph E. Pasciak,et al.  Analysis of non-overlapping domain decomposition algorithms with inexact solves , 1998, Math. Comput..

[31]  Mary F. Wheeler,et al.  Parallel Domain Decomposition Method for Mixed Finite Elements for Elliptic Partial Differential Equations , 1990 .

[32]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[33]  J. Périaux,et al.  Domain Decomposition Methods in Science and Engineering , 1994 .

[34]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[35]  Xiao-Chuan Cai The Use of Pointwise Interpolation in Domain Decomposition Methods with Nonnested Meshes , 1995, SIAM J. Sci. Comput..

[36]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[37]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[38]  James H. Bramble,et al.  Interpolation between Sobolev spaces in Lipschitz domains with an application to multigrid theory , 1995 .

[39]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[40]  H. Yserentant Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.

[41]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[42]  J. H. Bramble,et al.  A second order finite difference analog of the first biharmonic boundary value problem , 1966 .

[43]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[44]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[45]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[46]  Arnd Meyer,et al.  Hierarchical Extension Operators and Local Multigrid Methods in Domain Decomposition Preconditioners , 1994 .

[47]  Charbel Farhat,et al.  A Lagrange multiplier based divide and conquer finite element algorithm , 1991 .

[48]  Weiming Cao,et al.  An Additive Schwarz Method for the h - b Version of the Finite Element Method in Three Dimensions , 1998 .

[49]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[50]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[51]  Jacques Periaux,et al.  On Domain Decomposition Methods , 1988 .

[52]  I. Babuska,et al.  Efficient preconditioning for the p -version finite element method in two dimensions , 1991 .

[53]  P. Tallec,et al.  Domain decomposition with nonmatching grids: augmented Lagrangian approach , 1995 .

[54]  Olof B. Widlund,et al.  Iterative Substructuring Methods for Spectral Element Discretizations of Elliptic Systems I: Compressible Linear Elasticity , 1999, SIAM J. Numer. Anal..

[55]  C.-C. Jay Kuo,et al.  A Domain Decomposition Preconditioner Based on a Change to a Multilevel Nodal Basis , 1991, SIAM J. Sci. Comput..

[56]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[57]  Eero Vainikko,et al.  Additive Schwarz Methods without Subdomain Overlap and with New Coarse Spaces , 1997 .

[58]  Peter Oswald On the robustness of the BPX-preconditioner with respect to jumps in the coefficients , 1999, Math. Comput..

[59]  Jacques Periaux,et al.  SOLVING ELLIPTIC PROBLEMS BY DOMAIN DECOMPOSITION METHODS WTIH APPLICATIONS , 1984 .

[60]  D. Arnold Mixed finite element methods for elliptic problems , 1990 .

[61]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[62]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[63]  Tony F. Chan,et al.  Eigendecomposition of Domain Decomposition Interface Operators for Constant Coefficient Elliptic Problems , 1991, SIAM J. Sci. Comput..