Finding Social Landscapes for PSOs via Kernels

Particle swarm optimiser and genetic algorithm populations are macro-organisms, which perceive their environment as if filtered via a kernel. The kernel assimilates each individual's sensory abilities so that the collective moves using a greedy hill-climbing strategy. This model is fitted to data collected in real PSO and GA runs by using genetic programming to evolve the kernel. In nature animals tend to live within groups. The social interactions effectively transform the fitness selection landscape seen by an isolated individual. In some cases a group behaves (or even can be said to think) like a single organism. Kernels provide a lens which coarse-grains or averages individual senses and so may help explain joint actions and social responses. The original multi-modal problem is smoothed by convolving it with a problem specific filter designed by GP. Because populations see the transformed social fitness landscape, they can pass over local optima. GP can give a good fit between the predicted behaviour of the macroscopic organism and the actual runs.

[1]  Renato A. Krohling,et al.  Gaussian particle swarm with jumps , 2005, 2005 IEEE Congress on Evolutionary Computation.

[2]  E. Ozcan,et al.  Particle swarm optimization: surfing the waves , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[3]  Jacek M. Zurada,et al.  An approach to multimodal biomedical image registration utilizing particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[4]  Risto Miikkulainen,et al.  Adaptive Control Utilising Neural Swarming , 2002, GECCO.

[5]  Gilbert Syswerda,et al.  A Study of Reproduction in Generational and Steady State Genetic Algorithms , 1990, FOGA.

[6]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[7]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[8]  L. Darrell Whitley,et al.  Local Search and High Precision Gray Codes: Convergence Results and Neighborhoods , 2000, FOGA.

[9]  Xiaodong Li,et al.  Adaptively Choosing Neighbourhood Bests Using Species in a Particle Swarm Optimizer for Multimodal Function Optimization , 2004, GECCO.

[10]  Chris Aldrich,et al.  Intelligent process control utilising symbiotic memetic neuro-evolution , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[11]  Christopher R. Stephens,et al.  Effective Fitness as an Alternative Paradigm for Evolutionary Computation I: General Formalism , 2000, Genetic Programming and Evolvable Machines.

[12]  Christopher R. Stephens,et al.  Effective Fitness as an Alternative Paradigm for Evolutionary Computation II: Examples and Applications , 2001, Genetic Programming and Evolvable Machines.

[13]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[14]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[15]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[16]  Russell C. Eberhart,et al.  Multiobjective optimization using dynamic neighborhood particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[18]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[19]  C. R. Stephens,et al.  "Effective" fitness landscapes for evolutionary systems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[20]  Leandro dos Santos Coelho,et al.  Co-evolutionary particle swarm optimization for min-max problems using Gaussian distribution , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[21]  Gerry V. Dozier,et al.  Vulnerability Analysis of Immunity-Based Intrusion Detection Systems Using Evolutionary Hackers , 2004, GECCO.

[22]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[23]  Christopher R. Stephens,et al.  Landscapes and Effective Fitness , 2003 .

[24]  Riccardo Poli,et al.  Evolving problems to learn about particle swarm and other optimisers , 2005, 2005 IEEE Congress on Evolutionary Computation.

[25]  William H. Press,et al.  Numerical recipes in C , 2002 .

[26]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[27]  Peter J. Bentley,et al.  Dynamic Search With Charged Swarms , 2002, GECCO.

[28]  Frans van den Bergh,et al.  An analysis of particle swarm optimizers , 2002 .

[29]  R. J. W. Hodgson,et al.  Partical Swarm Optimization Applied To The Atomic Cluster Optimization Problem , 2002, GECCO.

[30]  Y. Rahmat-Samii,et al.  Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs , 2005, IEEE Transactions on Antennas and Propagation.