Centering, scaling, and transformations: improving the biological information content of metabolomics data

[1]  M. J. van der Werf,et al.  Quenching of microbial samples for increased reliability of microarray data. , 2006, Journal of microbiological methods.

[2]  T. Hankemeier,et al.  Microbial metabolomics with gas chromatography/mass spectrometry. , 2006, Analytical chemistry.

[3]  Bart Pieterse,et al.  Multivariate analysis of microarray data by principal component discriminant analysis: prioritizing relevant transcripts linked to the degradation of different carbohydrates in Pseudomonas putida S12. , 2006, Microbiology.

[4]  A. Smilde,et al.  Fusion of mass spectrometry-based metabolomics data. , 2005, Analytical chemistry.

[5]  T. Hankemeier,et al.  Microbial metabolomics: replacing trial-and-error by the unbiased selection and ranking of targets , 2005, Journal of Industrial Microbiology and Biotechnology.

[6]  W. Matson,et al.  Analytical precision, biological variation, and mathematical normalization in high data density metabolomics , 2005, Metabolomics.

[7]  Emmanuel Dias-Neto,et al.  Large-scale transcriptome analyses reveal new genetic marker candidates of head, neck, and thyroid cancer. , 2005, Cancer research.

[8]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[9]  M. J. van der Werf,et al.  Towards replacing closed with open target selection strategies. , 2005, Trends in biotechnology.

[10]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes , 2005, Nucleic Acids Res..

[11]  J. Edward Jackson,et al.  A User's Guide to Principal Components: Jackson/User's Guide to Principal Components , 2004 .

[12]  Age K. Smilde,et al.  Analysis of longitudinal metabolomics data , 2004, Bioinform..

[13]  Peter D. Karp,et al.  MetaCyc: a multiorganism database of metabolic pathways and enzymes. , 2004, Nucleic acids research.

[14]  O. Fiehn Metabolomics – the link between genotypes and phenotypes , 2004, Plant Molecular Biology.

[15]  T. Ebbels,et al.  Improved analysis of multivariate data by variable stability scaling: application to NMR-based metabolic profiling , 2003 .

[16]  R. Bro,et al.  Centering and scaling in component analysis , 2003 .

[17]  T. Fearn The Jackknife , 2000 .

[18]  S. Stein An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data , 1999 .

[19]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[20]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. Visser,et al.  Determination of intermediary metabolites in Aspergillus niger. , 1996 .

[22]  Yizeng Liang,et al.  Preprocessing of analytical profiles in the presence of homoscedastic or heteroscedastic noise , 1994 .

[23]  H. R. Keller,et al.  Evolving factor analysis in the presence of heteroscedastic noise , 1992 .

[24]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[25]  M. J. van der Werf,et al.  Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase , 1990, Applied and environmental microbiology.

[26]  W. A. Scheffers,et al.  Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. , 1990, Journal of general microbiology.

[27]  I. Jolliffe Principal Component Analysis , 2005 .

[28]  D. Cox,et al.  An Analysis of Transformations , 1964 .