Multi- and Single-output Support Vector Regression for Spectral Reflectance Recovery

In this paper, we deal with the problem of reflectance recovery from multispectral camera output using Support Vector Regression (SVR). As standard, SVR is unidimensional, the spectral reflectance recovery requires a multi-dimensional output. We propose two ways of adaptation: the transformation of the dataset (camera output) to a scalar-valued composite data model on the one hand, and the adaptation of a recent multi-output SVR on the other hand. We compare both performances to a Wiener-based reflectance recovery. The results are quite satisfactory and the comparison points out the advantages and drawbacks of each one of the proposed methods.

[1]  N. Shimano,et al.  Recovery of spectral reflectances of objects being imaged without prior knowledge , 2006, IEEE Transactions on Image Processing.

[2]  Ville Heikkinen,et al.  Regularized learning framework in the estimation of reflectance spectra from camera responses. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[4]  Dao-Qing Dai,et al.  Spectral reflectance estimation from camera responses by support vector regression and a composite model. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Anil K. Jain,et al.  A Multispectral Whole-Hand Biometric Authentication System , 2007, 2007 Biometrics Symposium.

[6]  浦部 利佳,et al.  Spectral database を用いた鉱物の教師付き分類 , 1998 .

[7]  Franck Marzani,et al.  Neural networks in two cascade algorithms for spectral reflectance reconstruction , 2005, IEEE International Conference on Image Processing 2005.

[8]  Reiner Lenz,et al.  Evaluation and unification of some methods for estimating reflectance spectra from RGB images. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  David Connah,et al.  Spectral recovery using polynomial models , 2005, IS&T/SPIE Electronic Imaging.

[10]  J. Cohen,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulas , 1968 .

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  J. Mansfield,et al.  Multispectral imaging in biology and medicine: Slices of life , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[13]  Ayan Chakrabarti,et al.  Statistics of real-world hyperspectral images , 2011, CVPR 2011.

[14]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[15]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[16]  Luis Alonso,et al.  Multioutput Support Vector Regression for Remote Sensing Biophysical Parameter Estimation , 2011, IEEE Geoscience and Remote Sensing Letters.