On polynomial kernels for sparse integer linear programs

Successful solvers for integer linear programs (ILPs) demonstrate that preprocessing can greatly speed up the computation. We study preprocessing for ILPs via the theoretical notion of kernelization from parameterized complexity. Prior to our work, there were only implied lower bounds from other problems that hold only for dense instances and do not take into account the domain size. We consider the feasibility problem for ILPs A x � b where A is an r-row-sparse matrix parameterized by the number of variables, i.e., A has at most r nonzero entries per row, and show that its kernelizability depends strongly on the domain size. If the domain is unbounded then this problem does not admit a polynomial kernelization unless NP � c o N P / p o l y . If, on the other hand, the domain size d of each variable is polynomially bounded in n, or if d is an additional parameter, then we do get a polynomial kernelization. This work initiates a rigorous study of preprocessing for Integer Linear Programs.We prove upper and lower bounds via the theoretical notion of kernelization.Known lower bounds inherited from other problems only apply to dense instances.We show that sparsity alone is not sufficient to guarantee positive results.On sparse instances the domain size is the determining factor for kernelization.

[1]  Saket Saurabh,et al.  Kernelization Lower Bounds Through Colors and IDs , 2014, ACM Trans. Algorithms.

[2]  Martin W. P. Savelsbergh,et al.  Integer-Programming Software Systems , 2005, Ann. Oper. Res..

[3]  Stefan Kratsch On Polynomial Kernels for Integer Linear Programs: Covering, Packing and Feasibility , 2013, ESA.

[4]  Friedrich Eisenbrand,et al.  Fast Integer Programming in Fixed Dimension , 2003, ESA.

[5]  Saket Saurabh,et al.  Kernelization - Preprocessing with a Guarantee , 2012, The Multivariate Algorithmic Revolution and Beyond.

[6]  Ravi Kannan,et al.  Improved algorithms for integer programming and related lattice problems , 1983, STOC.

[7]  Ronald V. Book,et al.  Review: Michael R. Garey and David S. Johnson, Computers and intractability: A guide to the theory of $NP$-completeness , 1980 .

[8]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[9]  R. Battiti,et al.  Covering Trains by Stations or the Power of Data Reduction , 1998 .

[10]  Friedrich Eisenbrand,et al.  Parametric Integer Programming in Fixed Dimension , 2008, Math. Oper. Res..

[11]  Ravi Kannan,et al.  Minkowski's Convex Body Theorem and Integer Programming , 1987, Math. Oper. Res..

[12]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[13]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[14]  Moni Naor,et al.  On the Compressibility of NP Instances and Cryptographic Applications , 2010, SIAM J. Comput..

[15]  Rolf Niedermeier,et al.  Invitation to data reduction and problem kernelization , 2007, SIGA.

[16]  R. Kipp Martin,et al.  Large scale linear and integer optimization - a unified approach , 1998 .

[17]  Gustav Nordh,et al.  Integer programming with 2-variable equations and 1-variable inequalities , 2009, Inf. Process. Lett..

[18]  Dror Rawitz,et al.  Efficient Algorithms for Integer Programs with Two Variables per Constraint1 , 2001, Algorithmica.

[19]  Stefan Kratsch,et al.  Recent developments in kernelization: A survey , 2014, Bull. EATCS.

[20]  Dror Rawitz,et al.  Efficient Algorithms for Integer Programs with Two Variables per Constraint , 1999, ESA.

[21]  Kenneth L. Clarkson,et al.  Las Vegas algorithms for linear and integer programming when the dimension is small , 1995, JACM.

[22]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[25]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[26]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[27]  Stefan Kratsch,et al.  On Kernels for Covering and Packing ILPs with Small Coefficients , 2014, IPEC.

[28]  Ravi Kannan,et al.  A Polynomial Algorithm for the Two-Variable Integer Programming Problem , 1980, JACM.

[29]  Hans L. Bodlaender,et al.  Kernelization: New Upper and Lower Bound Techniques , 2009, IWPEC.

[30]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[31]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[32]  Moni Naor,et al.  On the Compressibility of NP Instances and Cryptographic Applications , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[33]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[34]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[35]  Dieter van Melkebeek,et al.  Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses , 2010, STOC '10.

[36]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..