Evolutionary Computation in Combinatorial Optimization

Apart from few exceptions, the mathematical runtime analysis of evolutionary algorithms is mostly concerned with expected runtimes. In this work, we argue that stochastic domination is a notion that should be used more frequently in this area. Stochastic domination allows to formulate much more informative performance guarantees than the expectation alone, it allows to decouple the algorithm analysis into the true algorithmic part of detecting a domination statement and probability theoretic part of deriving the desired probabilistic guarantees from this statement, and it allows simpler and more natural proofs. As particular results, we prove a fitness level theorem which shows that the runtime is dominated by a sum of independent geometric random variables, we prove tail bounds for several classic problems, and we give a short and natural proof for Witt’s result that the runtime of any (μ, p) mutation-based algorithm on any function with unique optimum is subdominated by the runtime of a variant of the (1 + 1) EA on the OneMax function.

[1]  Ashiqur R. KhudaBukhsh,et al.  SATenstein: automatically building local search SAT solvers from components , 2009, IJCAI 2009.

[2]  Jorge Tavares,et al.  Automatic Design of Ant Algorithms with Grammatical Evolution , 2012, EuroGP.

[3]  Fred W. Glover,et al.  Path relinking for unconstrained binary quadratic programming , 2012, Eur. J. Oper. Res..

[4]  Abraham Duarte,et al.  Advanced Scatter Search for the Max-Cut Problem , 2009, INFORMS J. Comput..

[5]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[6]  Thomas Stützle,et al.  From Grammars to Parameters: Automatic Iterated Greedy Design for the Permutation Flow-Shop Problem with Weighted Tardiness , 2013, LION.

[7]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[8]  Fred W. Glover,et al.  A unified modeling and solution framework for combinatorial optimization problems , 2004, OR Spectr..

[9]  Yuri Malitsky,et al.  Model-Based Genetic Algorithms for Algorithm Configuration , 2015, IJCAI.

[10]  Bernd Freisleben,et al.  Greedy and Local Search Heuristics for Unconstrained Binary Quadratic Programming , 2002, J. Heuristics.

[11]  Graham Kendall,et al.  Grammatical Evolution of Local Search Heuristics , 2012, IEEE Transactions on Evolutionary Computation.

[12]  Fred W. Glover,et al.  Diversification-driven tabu search for unconstrained binary quadratic problems , 2010, 4OR.

[13]  Thomas Stützle,et al.  Automatic Design of Evolutionary Algorithms for Multi-Objective Combinatorial Optimization , 2014, PPSN.

[14]  Nuno Lourenço,et al.  Unveiling the properties of structured grammatical evolution , 2016, Genetic Programming and Evolvable Machines.

[15]  Jose M. Framiñan,et al.  New hard benchmark for flowshop scheduling problems minimising makespan , 2015, Eur. J. Oper. Res..

[16]  Graham Kendall,et al.  Automated code generation by local search , 2013, J. Oper. Res. Soc..

[17]  Franz Rothlauf,et al.  On the Locality of Grammatical Evolution , 2006, EuroGP.

[18]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[19]  Éric D. Taillard,et al.  Benchmarks for basic scheduling problems , 1993 .

[20]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[21]  Panos M. Pardalos,et al.  Complexity of uniqueness and local search in quadratic 0-1 programming , 1992, Oper. Res. Lett..

[22]  Thomas Stützle,et al.  Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools , 2014, Comput. Oper. Res..

[23]  Fred W. Glover,et al.  The unconstrained binary quadratic programming problem: a survey , 2014, Journal of Combinatorial Optimization.

[24]  G. Kochenberger,et al.  0-1 Quadratic programming approach for optimum solutions of two scheduling problems , 1994 .

[25]  M. O'Neill,et al.  Grammatical evolution , 2001, GECCO '09.

[26]  Gintaras Palubeckis,et al.  Iterated Tabu Search for the Unconstrained Binary Quadratic Optimization Problem , 2006, Informatica.

[27]  Kevin Leyton-Brown,et al.  Parallel Algorithm Configuration , 2012, LION.

[28]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[29]  J. Jeffry Howbert,et al.  The Maximum Clique Problem , 2007 .

[30]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[31]  Pierre Hansen,et al.  Algorithms for the maximum satisfiability problem , 1987, Computing.

[32]  Manuel Laguna,et al.  Tabu Search , 1997 .