Porous lanthanide-organic framework with zeolite-like topology.

Two novel isomorphous porous frameworks of Ln(III), {[Ln2(imidc)2(H2O)3](H2O)}n, [Ln = Gd(III) (1) and Er(III) (2)] have been synthesized hydrothermally using multifunctional 4,5-imidazoledicarboxylic acid (imidc) as a connector; they have a zeolite-like network topology which can provide another form upon dehydration, and exhibit selective adsorption properties for H2O over N2, CO2 and MeOH.

[1]  Song Gao,et al.  New porous lanthanide-organic frameworks: Synthesis, characterization, and properties of lanthanide 2,6-naphthalenedicarboxylates , 2004 .

[2]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[3]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[4]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[5]  Kristie M. Adams,et al.  Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. , 2003, Journal of the American Chemical Society.

[6]  X. You,et al.  [Co5(im)10⋅2 MB]∞: A Metal‐Organic Open‐Framework with Zeolite‐Like Topology , 2002 .

[7]  YooJin Kim,et al.  Conformation change of the cyclohexanedicarboxylate ligand toward 2D and 3D La(III)-organic coordination networks. , 2002, Chemical communications.

[8]  M. Verelst,et al.  Unprecedented ferromagnetic interaction in homobinuclear erbium and gadolinium complexes: structural and magnetic studies. , 2002, Angewandte Chemie.

[9]  W. Wong,et al.  Synthesis, crystal structures, luminescence and magnetic properties of lanthanide complexes containing the 1,8-bis(2-hydroxybenzamido)-3,6-dioxaoctane ligand , 2002 .

[10]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[11]  A. Michaelides,et al.  Microporous Rare Earth Coordination Polymers: Effect of Lanthanide Contraction on Crystal Architecture and Porosity , 2000 .

[12]  Michael O'Keeffe,et al.  Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]1 , 2000 .

[13]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[14]  Zheng,et al.  Novel Single- and Double-Layer and Three-Dimensional Structures of Rare-Earth Metal Coordination Polymers: The Effect of Lanthanide Contraction and Acidity Control in Crystal Structure Formation. , 2000, Angewandte Chemie.

[15]  G. Wong,et al.  Crystal Engineering of Acentric Diamondoid Metal-Organic Coordination Networks. , 1999, Angewandte Chemie.

[16]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[17]  C. E. Webster,et al.  Molecular Dimensions for Adsorptives , 1998 .