Fixed grid techniques for phase change problems: A review

SUMMARY The aim of this paper is to categorize the major fixed grid formulations and solution methods for conduction controlled phase change problems. Using a two phase model of. a solid/liquid phase change, the basic enthalpy equation is derived. Starting from this equation, a number of alternative formulations are obtained. All the formulations are reduced to a standard form. From this standard form, finite element and finite volume discretizations are developed. These discretizations are used as the basis for a number of fixed grid numerical solution techniques for solidification phase change systems. In particular, various apparent capacity and source based enthalpy methods are explored.

[1]  M. Rappaz,et al.  Modelling of microstructure formation in solidification processes , 1989 .

[2]  Vaughan R Voller,et al.  ENTHALPY-POROSITY TECHNIQUE FOR MODELING CONVECTION-DIFFUSION PHASE CHANGE: APPLICATION TO THE MELTING OF A PURE METAL , 1988 .

[3]  I. V. Samarasekera,et al.  Comparison of numerical modeling techniques for complex, two-dimensional, transient heat-conduction problems , 1984 .

[4]  Jean S. Roose,et al.  Modelization of phase changes by fictitious‐heat flow , 1984 .

[5]  M. Tezer-Sezgin,et al.  Finite element method for solving mhd flow in a rectangular duct , 1989 .

[6]  Q. T. Pham The use of lumped capacitance in the finite-element solution of heat conduction problems with phase change , 1986 .

[7]  Roland W. Lewis,et al.  An improved algrorithm for heat conduction problems with phase change , 1978 .

[8]  Vaughan R Voller,et al.  Implicit Finite—difference Solutions of the Enthalpy Formulation of Stefan Problems , 1985 .

[9]  J. Z. Zhu,et al.  The finite element method , 1977 .

[10]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[11]  Jonathan A. Dantzig,et al.  MODELLING LIQUID-SOLID PHASE CHANGES WITH MELT CONVECTION , 1989 .

[12]  R. White A nonlinear parallel algorithm with application to the Stefan problem , 1986 .

[13]  Karl-Hermann Tacke,et al.  Discretization of the expliclt enthalpy method for planar phase change , 1985 .

[14]  Gerry E. Schneider,et al.  a New Implicit Solution Procedure for Multidimensional Finite-Difference Modeling of the Stefan Problem , 1985 .

[15]  Won Soon Chang,et al.  A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model , 1989 .

[16]  A. Segal,et al.  Comparison of finite element techniques for solidification problems , 1986 .

[17]  R. M. Furzeland,et al.  A Comparative Study of Numerical Methods for Moving Boundary Problems , 1980 .

[18]  P. M. Roberts,et al.  Finite element simulation of solidification problems , 1987 .

[19]  K. Kobayashi,et al.  The Effect of Fluid Flow on the Eutectic Lamellar Spacing , 1984 .

[20]  Jacob Bear,et al.  Macroscopic modelling of transport phenomena in porous media. 1: The continuum approach , 1986 .

[21]  Roland W. Lewis,et al.  Finite element solution of non‐linear heat conduction problems with special reference to phase change , 1974 .

[22]  J. Hsiao,et al.  AN EFFICIENT ALGORITHM FOR FINITE-DIFFERENCE ANALYSES OF HEAT TRANSFER WITH MELTING AND SOLIDIFICATION , 1984 .

[23]  R. Viskanta,et al.  An experimental study of solidification of binary mixtures with double-diffusive convection in the liquid , 1989 .

[24]  Z. Abdullah,et al.  On the numerical modelling of heat transfer during solidification processes , 1988 .

[25]  Vaughan R Voller,et al.  Finite difference solutions of solidification phase change problems: Transformed versus fixed grids , 1990 .

[26]  P. M. Roberts,et al.  APPLICATION OF AN ALTERNATING-DIRECTION FINITE-ELEMENT METHOD TO HEAT TRANSFER PROBLEMS INVOLVING A CHANGE OF PHASE , 1984 .

[27]  Klaus-Jürgen Bathe,et al.  AN EFFICIENT ALGORITHM FOR ANALYSIS OF NONLINEAR HEAT TRANSFER WITH PHASE CHANGES , 1982 .

[28]  Sergio Idelsohn,et al.  A temperature‐based finite element solution for phase‐change problems , 1986 .

[29]  Paul T. Boggs,et al.  Moving boundary problems , 1978 .

[30]  Roland W. Lewis,et al.  Finite element simulation of freezing processes in soils , 1978 .

[31]  W. C. Schreiber,et al.  The numerical simulation of heat conduction in irregularly‐shaped materials of thermally‐dependent properties , 1990 .

[32]  J. Crank Free and moving boundary problems , 1984 .

[33]  G. Comini,et al.  On the solution of the nonlinear heat conduction equations by numerical methods , 1973 .

[34]  V. Voller FAST IMPLICIT FINITE-DIFFERENCE METHOD FOR THE ANALYSIS OF PHASE CHANGE PROBLEMS , 1990 .

[35]  Jacob Bear,et al.  Macroscopic modelling of transport phenomena in porous media. 2: Applications to mass, momentum and energy transport , 1986 .

[36]  V. Voller,et al.  The modelling of heat, mass and solute transport in solidification systems , 1989 .

[37]  Roland W. Lewis,et al.  Finite element modelling of solidification in sand castings employing an implicit—explicit algorithm , 1985 .

[38]  Mario A. Storti,et al.  Making curved interfaces straight in phase‐change problems , 1987 .

[39]  Frank P. Incropera,et al.  The evolution of macrosegregation in statically cast binary ingots , 1987 .

[40]  T. W. Clyne Numerical modelling of directional solidification of metallic alloys , 1982 .