Multifractal analysis of three-dimensional histogram from color images

Natural images, especially color or multicomponent images, are complex information-carrying signals. To contribute to the characterization of this complexity, we investigate the possibility of multiscale organization in the colorimetric structure of natural images. This is realized by means of a multifractal analysis applied to the three-dimensional histogram from natural color images. The observed behaviors are confronted to those of reference models with known multifractal properties. We use for this purpose synthetic random images with trivial monofractal behavior, and multidimensional multiplicative cascades known for their actual multifractal behavior. The behaviors observed on natural images exhibit similarities with those of the multifractal multiplicative cascades and display the signature of elaborate multiscale organizations stemming from the histograms of natural color images. This type of characterization of colorimetric properties can be helpful to various tasks of digital image processing, as for instance modeling, classification, indexing.

[1]  H E Stanley,et al.  Statistical physics and physiology: monofractal and multifractal approaches. , 1999, Physica A.

[2]  Y. Fisher Fractal image compression: theory and application , 1995 .

[3]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[4]  Ruderman,et al.  Multiscaling and information content of natural color images , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Antonio Turiel Relevance of multifractal textures in static images , 2003 .

[6]  David Rousseau,et al.  Fractal Analysis Tools for Characterizing the Colorimetric Organization of Digital Images - Case Study using Natural and Synthetic Images , 2010, VISAPP.

[7]  E. Bullmore,et al.  Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance , 2008, Journal of Neuroscience Methods.

[8]  Richard Taylor,et al.  Authenticating Pollock paintings using fractal geometry , 2007, Pattern Recognit. Lett..

[9]  S. Mallat A wavelet tour of signal processing , 1998 .

[10]  D. Field,et al.  Human discrimination of fractal images. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[11]  M. Giona,et al.  Scaling and scaling crossover for transport on anisotropic fractal structures , 1997 .

[12]  Eero P. Simoncelli,et al.  On Advances in Statistical Modeling of Natural Images , 2004, Journal of Mathematical Imaging and Vision.

[13]  P. R. Fotiou Fractals and wavelets , 2003 .

[14]  David Rousseau,et al.  Fractal capacity dimension of three-dimensional histogram from color images , 2010, Multidimens. Syst. Signal Process..

[15]  Tat Soon Yeo,et al.  A novel multifractal estimation method and its application to remote image segmentation , 2002, IEEE Trans. Geosci. Remote. Sens..

[16]  Rosario N. Mantegna,et al.  Fractals in biology and medicine , 1995 .

[17]  Pierre Chainais,et al.  Infinitely Divisible Cascades to Model the Statistics of Natural Images , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[19]  Zhi-Yuan Su,et al.  Local scaling and multifractal spectrum analyses of DNA sequences – GenBank data analysis , 2009 .

[20]  J. L. Véhel,et al.  MULTIFRACTAL SEGMENTATION OF IMAGES , 1994 .

[21]  G. Yadid,et al.  Multifractal properties of brain neuron signals , 2002 .

[22]  J R Mureika,et al.  Multifractal structure in nonrepresentational art. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  H. Stanley,et al.  Multifractal phenomena in physics and chemistry , 1988, Nature.

[24]  R. Millane,et al.  Effects of occlusion, edges, and scaling on the power spectra of natural images. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Jeffrey M. Hausdorff,et al.  Levels of complexity in scale-invariant neural signals. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[27]  Yann Gousseau,et al.  Modeling Occlusion and Scaling in Natural Images , 2007, Multiscale Model. Simul..

[28]  F. Chapeau-Blondeau,et al.  Multifractal analysis of central (electrocardiography) and peripheral (laser Doppler flowmetry) cardiovascular time series from healthy human subjects , 2009, Physiological measurement.

[29]  Trieu-Kien Truong,et al.  Fast fractal image compression using spatial correlation , 2004 .

[30]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[31]  Michael Liljenstam,et al.  Crossover scaling effects in aggregated TCP traffic with congestion losses , 2002, CCRV.

[32]  Ying Chen,et al.  Spatial adaptive Bayesian wavelet threshold exploiting scale and space consistency , 2008, Multidimens. Syst. Signal Process..

[33]  Antonio Turiel,et al.  Reconstructing images from their most singular fractal manifold , 2002, IEEE Trans. Image Process..

[34]  Patrice Abry,et al.  Scaling, Fractals and Wavelets , 2009 .

[35]  Daniel L. Ruderman,et al.  Origins of scaling in natural images , 1996, Vision Research.

[36]  David A. Landgrebe,et al.  Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[37]  Ming-Sheng Wu,et al.  Spatial correlation genetic algorithm for fractal image compression , 2006 .

[38]  Mark Drinkwater,et al.  Universal multifractal scaling of synthetic aperture radar images of sea-ice , 1996, IEEE Trans. Geosci. Remote. Sens..

[39]  Bin Chen,et al.  Affective property of image and fractal dimension , 2003 .

[40]  Antonio Turiel,et al.  The Multifractal Structure of Contrast Changes in Natural Images: From Sharp Edges to Textures , 2000, Neural Computation.

[41]  Martin Turner,et al.  Fractal geometry in digital imaging , 1998 .

[42]  L. Amaral,et al.  Multifractality in human heartbeat dynamics , 1998, Nature.

[43]  F. Angulo-Brown,et al.  SOME CASES OF CROSSOVER BEHAVIOR IN HEART INTERBEAT AND ELECTROSEISMIC TIME SERIES , 2005 .

[44]  F. Chapeau-Blondeau,et al.  Generalized fractal dimensions of laser Doppler flowmetry signals recorded from glabrous and nonglabrous skin. , 2010, Medical physics.

[45]  Jianbo Gao,et al.  Multiplicative multifractal modeling and discrimination of human neuronal activity [rapid communication] , 2005 .

[46]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[47]  J. L. Véhel,et al.  Stochastic fractal models for image processing , 2002, IEEE Signal Process. Mag..

[48]  Rongchun Zhao,et al.  Morphology-based multifractal estimation for texture segmentation , 2006, IEEE Transactions on Image Processing.

[49]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[50]  F. Chapeau-Blondeau,et al.  Fractal structure in the color distribution of natural images , 2009 .

[51]  Bidyut Baran Chaudhuri,et al.  Multifractal and generalized dimensions of gray-tone digital images , 1995, Signal Process..

[52]  D. Harte Multifractals: Theory and Applications , 2001 .

[53]  Bruno A. Olshausen,et al.  Vision and the Coding of Natural Images , 2000, American Scientist.