Approximation Schemes for Mixed Optimal Stopping and Control Problems with Nonlinear Expectations and Jumps

We propose a class of numerical schemes for mixed optimal stopping and control of processes with infinite activity jumps and where the objective is evaluated by a nonlinear expectation. Exploiting an approximation by switching systems, piecewise constant policy timestepping reduces the problem to nonlocal semi-linear equations with different control parameters, uncoupled over individual time steps, which we solve by fully implicit monotone approximations to the controlled diffusion and the nonlocal term, and specifically the Lax–Friedrichs scheme for the nonlinearity in the gradient. We establish a comparison principle for the switching system and demonstrate the convergence of the schemes, which subsequently gives a constructive proof for the existence of a solution to the switching system. Numerical experiments are presented for a recursive utility maximization problem to demonstrate the effectiveness of the new schemes.

[1]  G. Barles,et al.  Numerical Methods in Finance: Convergence of Numerical Schemes for Degenerate Parabolic Equations Arising in Finance Theory , 1997 .

[2]  G. Barles,et al.  Convergence of approximation schemes for fully nonlinear second order equations , 1991 .

[3]  Nikos Katzourakis An Introduction To Viscosity Solutions for Fully Nonlinear PDE with Applications to Calculus of Variations in L , 2014 .

[4]  M. Quenez,et al.  Mixed generalized Dynkin game and stochastic control in a Markovian framework , 2015, 1508.02742.

[5]  Thomas Kruse,et al.  BSDEs with monotone generator driven by Brownian and Poisson noises in a general filtration , 2014 .

[6]  Emanuela Rosazza Gianin,et al.  Risk measures via g-expectations , 2006 .

[7]  G. Barles,et al.  Backward stochastic differential equations and integral-partial differential equations , 1997 .

[8]  Guy Barles,et al.  Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations , 2007, Math. Comput..

[9]  Espen R. Jakobsen,et al.  Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes , 2010 .

[10]  Shuilian Xie,et al.  A semismooth Newton method for a kind of HJB equation , 2017, Comput. Math. Appl..

[11]  H. Pham,et al.  Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps , 2013, 1311.4505.

[12]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[13]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[14]  Agnès Sulem,et al.  Optimal Stopping for Dynamic Risk Measures with Jumps and Obstacle Problems , 2014, J. Optim. Theory Appl..

[15]  Kristian Debrabant,et al.  Semi-Lagrangian schemes for linear and fully non-linear diffusion equations , 2009, Math. Comput..

[16]  张宇 Ambiguity , 2017, Encyclopedia of GIS.

[17]  Kenneth H. Karlsen,et al.  Difference-Quadrature Schemes for Nonlinear Degenerate Parabolic Integro-PDE , 2009, SIAM J. Numer. Anal..

[18]  Christoph Reisinger,et al.  Piecewise constant policy approximations to Hamilton-Jacobi-Bellman equations , 2015, 1503.05864.

[19]  P. Lions,et al.  Two approximations of solutions of Hamilton-Jacobi equations , 1984 .

[20]  Larry G. Epstein,et al.  Ambiguity, risk, and asset returns in continuous time , 2000 .

[21]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[22]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[23]  Christoph Reisinger,et al.  A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance , 2011, SIAM J. Numer. Anal..

[24]  E. Jakobsen,et al.  CONTINUOUS DEPENDENCE ESTIMATES FOR VISCOSITY SOLUTIONS OF INTEGRO-PDES , 2005 .

[25]  Indranil Chowdhury,et al.  On the Rate of Convergence for Monotone Numerical Schemes for Nonlocal Isaacs Equations , 2017, SIAM J. Numer. Anal..

[26]  N. El Karoui,et al.  Numerical Methods in Finance: Reflected Backward SDEs and American Options , 1997 .

[27]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[28]  Juan Li,et al.  Stochastic Differential Games and Viscosity Solutions of Hamilton--Jacobi--Bellman--Isaacs Equations , 2008, SIAM J. Control. Optim..

[29]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[30]  M. Royer Backward stochastic differential equations with jumps and related non-linear expectations , 2006 .

[31]  Kazufumi Ito,et al.  Semi–Smooth Newton Methods for Variational Inequalities of the First Kind , 2003 .

[32]  Agnès Sulem,et al.  A Weak Dynamic Programming Principle for Combined Optimal Stopping/Stochastic Control with Ef-expectations , 2016, SIAM J. Control. Optim..

[33]  M. Quenez,et al.  BSDEs with jumps, optimization and applications to dynamic risk measures , 2013 .

[34]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[35]  Robustness of Quadratic Hedging Strategies in Finance via Backward Stochastic Differential Equations with Jumps , 2013, 1312.5115.