A Uniform Circuit Lower Bound for the Permanent

The authors show that uniform families of ACC circuits of subexponential size cannot compute the permanent function. This also implies similar lower bounds for certain sets in PP. This is one of the very few examples of a lower bound in circuit complexity whose proof hinges on the uniformity condition; it is still unknown if there is any set in Ntime ($2^{n^{O(1)}}$) that does not have nonuniform ACC circuits.

[1]  Denis Thérien,et al.  Automata Theory Meets Circuit Complexity , 1989, ICALP.

[2]  Eric Allendery,et al.  On Strong Separations from AC 0 , 1995 .

[3]  Andrew Chi-Chih Yao,et al.  A Circuit-Based Proof of Toda's Theorem , 1993, Inf. Comput..

[4]  Thomas Schwentick,et al.  The Power of the Middle Bit of a #P Function , 1995, J. Comput. Syst. Sci..

[5]  A BarringtonDavid Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1989 .

[6]  M. A. Epstein Lower Bounds for the Size of Circuits of Bounded Depth in Basis F^; G , 1986 .

[7]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[8]  N. Immerman,et al.  On uniformity within NC 1 . , 1988 .

[9]  Andrew Chi-Chih Yao,et al.  ON ACC and threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[10]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[11]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[12]  Carsten Lund,et al.  On the hardness of computing the permanent of random matrices , 1996, STOC '92.

[13]  Michael Sipser,et al.  Borel sets and circuit complexity , 1983, STOC.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  David A. Mix Barrington Quasipolynomial size circuit classes , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[16]  James Aspnes,et al.  The expressive power of voting polynomials , 1994, Comb..

[17]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .

[18]  Denis Thérien,et al.  Finite monoids and the fine structure of NC1 , 1987, STOC.

[19]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[20]  Neil Immerman,et al.  On Uniformity within NC¹ , 1990, J. Comput. Syst. Sci..

[21]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[22]  Viktória Zankó,et al.  #P-Completeness via Many-One Reductions , 1990, Int. J. Found. Comput. Sci..

[23]  J. Håstad Computational limitations of small-depth circuits , 1987 .

[24]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[25]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[26]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[27]  Eric Allender,et al.  Depth Reduction for Circuits of Unbounded Fan-In , 1994, Inf. Comput..

[28]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[29]  Seinosuke Toda,et al.  PP is as Hard as the Polynomial-Time Hierarchy , 1991, SIAM J. Comput..

[30]  Stephen A. Cook,et al.  Log Depth Circuits for Division and Related Problems , 1984, SIAM J. Comput..

[31]  Eric Allender,et al.  On the Power of Uniform Families of Constant Depth Treshold Circuits , 1990, MFCS.

[32]  Jacobo Torán,et al.  The power of the middle bit , 1992, [1992] Proceedings of the Seventh Annual Structure in Complexity Theory Conference.

[33]  Samuel R. Buss,et al.  An Optimal Parallel Algorithm for Formula Evaluation , 1992, SIAM J. Comput..

[34]  Shai Halevi,et al.  Zero-one permanent is not=P-complete, a simpler proof , 1993, [1993] The 2nd Israel Symposium on Theory and Computing Systems.

[35]  Eric Allender,et al.  On Strong Separations from AC , 1993, Advances In Computational Complexity Theory.