The Stability of Block Variants of Classical Gram-Schmidt
暂无分享,去创建一个
[1] Yusaku Yamamoto,et al. Shifted Cholesky QR for Computing the QR Factorization of Ill-Conditioned Matrices , 2018, SIAM J. Sci. Comput..
[2] E. Haynsworth. Determination of the inertia of a partitioned Hermitian matrix , 1968 .
[3] L. Reichel,et al. A Newton basis GMRES implementation , 1994 .
[4] JESSE L. BARLOW,et al. Block Modified Gram-Schmidt Algorithms and Their Analysis , 2019, SIAM J. Matrix Anal. Appl..
[5] Julien Langou,et al. A note on the error analysis of classical Gram–Schmidt , 2006, Numerische Mathematik.
[6] N. Abdelmalek. Round off error analysis for Gram-Schmidt method and solution of linear least squares problems , 1971 .
[7] James Demmel,et al. Stability of block LU factorization , 1992, Numer. Linear Algebra Appl..
[8] Jesse L. Barlow,et al. Reorthogonalized block classical Gram–Schmidt , 2011, Numerische Mathematik.
[9] Kirk M. Soodhalter,et al. Admissible and attainable convergence behavior of block Arnoldi and GMRES , 2019, SIAM J. Matrix Anal. Appl..
[10] Jack J. Dongarra,et al. Mixed-Precision Cholesky QR Factorization and Its Case Studies on Multicore CPU with Multiple GPUs , 2015, SIAM J. Sci. Comput..
[11] Laura Grigori,et al. Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication , 2016, SIAM J. Matrix Anal. Appl..
[12] Julien Langou,et al. Rounding error analysis of the classical Gram-Schmidt orthogonalization process , 2005, Numerische Mathematik.
[13] William Jalby,et al. Stability Analysis and Improvement of the Block Gram-Schmidt Algorithm , 1991, SIAM J. Sci. Comput..
[14] W. Joubert,et al. Parallelizable restarted iterative methods for nonsymmetric linear systems. part I: Theory , 1992 .
[15] Å. Björck. Solving linear least squares problems by Gram-Schmidt orthogonalization , 1967 .