Biotechnological approaches for L-ascorbic acid production.

Over the past decade there has been increasing pressure to develop alternatives to the Reichstein process, a largely chemical synthesis by which the vast majority of world vitamin C (L-ascorbic acid, L-AA) is produced. The pressures include increasing environmental concerns and legislation, and the need to increase process efficiency and reduce capital costs. The development of efficient fermentation processes in the past ten years has also represented a catalyst for change. Here, we describe the development of biotechnological alternatives for the synthesis of Reichstein intermediates by industrial microorganisms. The recent elucidation of the plant biosynthetic pathway represents new opportunities not only for the direct synthesis of L-AA by fermentation but also for the production of human crop plants and animal fodder with enhanced nutritional value. We discuss the potential for these developments in the light of recent findings concerning L-AA biosynthesis in plants.

[1]  E. Vandamme Biotechnology of vitamins, pigments, and growth factors , 1989 .

[2]  S. Karita,et al.  L-Galactono-γ-lactone Dehydrogenase from Sweet Potato : Purification and cDNA Sequence Analysis , 1998 .

[3]  M. Van Montagu,et al.  Ascorbate biosynthesis in Arabidopsis cell suspension culture. , 1999, Plant physiology.

[4]  K. D. Kulbe,et al.  Enzymatic Synthesis of L‐Ascorbic Acid via D‐Uronic Acids; Membrane‐Reactor Integrated Recovery of D‐Galacturonic Acid from Pectin Hydrolysates a , 1987, Annals of the New York Academy of Sciences.

[5]  J. Kossmann,et al.  Antisense inhibition of the GDP-mannose pyrophosphorylase reduces the ascorbate content in transgenic plants leading to developmental changes during senescence. , 1999, The Plant journal : for cell and molecular biology.

[6]  P. De Wulf,et al.  Optimized synthesis of L-sorbose by C(5)-dehydrogenation of D-sorbitol with Gluconobacter oxydans. , 2000, Biotechnology and bioengineering.

[7]  T. Sonoyama,et al.  Purification and properties of two 2,5-diketo-d-gluconate reductases from a mutant strain derived from Corynebacterium sp. , 1987 .

[8]  J. Y. Kim,et al.  D-arabinose dehydrogenase and biosynthesis of erythroascorbic acid in Candida albicans. , 1996, Biochimica et biophysica acta.

[9]  Jeffrey A. Running,et al.  Heterotrophic production of ascorbic acid by microalgae , 1994, Journal of Applied Phycology.

[10]  M. Niwa,et al.  Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain , 1997, Applied and environmental microbiology.

[11]  R. Viola,et al.  Biosynthesis of L-ascorbic acid (vitamin C) by Saccharomyces cerevisiae. , 2000, FEMS microbiology letters.

[12]  W. Huh,et al.  Characterisation of D-arabinono-1,4-lactone oxidase from Candida albicans ATCC 10231. , 1994, European journal of biochemistry.

[13]  R. Waagbø,et al.  EXAMINATION OF THE QUALITATIVE ABILITY OF SOME COLD WATER MARINE TELEOSTS TO SYNTHESISE ASCORBIC ACID , 1998 .

[14]  H. Heick,et al.  The occurrence of ascorbic acid among the yeasts. , 1972, Canadian journal of microbiology.

[15]  T. Reichstein,et al.  Eine ergiebige Synthese der l-Ascorbinsäure (C-Vitamin) , 1934 .

[16]  Katsuhiro Matsuda,et al.  Production of 2-Keto-l-Gulonic Acid from d-Glucose by Two-Stage Fermentation , 1982, Applied and environmental microbiology.

[17]  A. Asakura,et al.  Cloning and nucleotide sequencing of the membrane-bound L-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans , 1995, Applied and environmental microbiology.

[18]  M. Kumar,et al.  The commercial production of chemicals using pathway engineering. , 2000, Biochimica et biophysica acta.

[19]  W. Huh,et al.  D-arabinose dehydrogenase and its gene from Saccharomyces cerevisiae. , 1998, Biochimica et biophysica acta.

[20]  M. Lupo Antioxidants and vitamins in cosmetics. , 2001, Clinics in dermatology.

[21]  P. Mourão Epimerization of D-glucose to L-galactose during the biosynthesis of a sulfated L-galactan in the ascidian tunic. , 1991, Biochemistry.

[22]  N. Smirnoff,et al.  The biosynthesis of erythroascorbate in Saccharomyces cerevisiae and its role as an antioxidant. , 2000, Free radical biology & medicine.

[23]  P. Gao,et al.  Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-d-gluconic acid and synthesis of 2-keto-l-gulonic acid in a multienzyme system , 2001, Applied biochemistry and biotechnology.

[24]  Jiang Aiguo,et al.  Synthesis of 2-keto-L-gulonic acid from gluconic acid by co-immobilized Gluconobacter oxydans and Corynebacterium sp. , 1998, Biotechnology Letters.

[25]  Y. Setoguchi,et al.  L-Sorbose Dissimilation in 2-Keto-L-gulonic Acid-producing Mutant UV10 Derived from Gluconobacter melanogenus IFO 3293 , 1990 .

[26]  W. Huh,et al.  Bacterial Production of d-Erythroascorbic Acid andl-Ascorbic Acid through Functional Expression ofSaccharomyces cerevisiaed-Arabinono-1,4-Lactone Oxidase in Escherichia coli , 1999, Applied and Environmental Microbiology.

[27]  T. Hoshino,et al.  Isolation and Characterization of a New Quinoprotein Dehydrogenase, L-Sorbose/L-Sorbosone Dehydrogenase. , 1999, Bioscience, biotechnology, and biochemistry.

[28]  J. Boudrant Microbial processes for ascorbic acid biosynthesis: a review. , 1990, Enzyme and microbial technology.

[29]  S. Petit,et al.  An expedient and practical three-step synthesis of vitamin C from a byproduct of the sugar industry: the L-galactono-1,4-lactone pathway , 1993 .

[30]  M. Van Montagu,et al.  Partial purification and identification of GDP-mannose 3",5"-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. Huh,et al.  D‐Erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae , 1998, Molecular microbiology.

[32]  H. Sauberlich Pharmacology of vitamin C. , 1994, Annual review of nutrition.

[33]  R. Lazarus,et al.  What Makes a Good Computer Device? , 1985, Science.

[34]  A. Szent-Györgyi Observations on the function of peroxidase systems and the chemistry of the adrenal cortex: Description of a new carbohydrate derivative. , 1928, The Biochemical journal.

[35]  S. Yoshida,et al.  Direct fermentation of 2-keto-L-gulonic acid in recombinant Gluconobacter oxydans. , 1998, Biotechnology and bioengineering.

[36]  M. Payton,et al.  Conversion of Glucose to 2-Keto-l-Gulonate, an Intermediate in l-Ascorbate Synthesis, by a Recombinant Strain of Erwinia citreus , 1988, Applied and environmental microbiology.

[37]  R. Viola,et al.  The use of micro-organisms for L-ascorbic acid production: current status and future perspectives , 2001, Applied Microbiology and Biotechnology.

[38]  R. Last,et al.  Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  V. Delic,et al.  Microbial Reactions for the Synthesis of Vitamin C (l-Ascorbic Acid) , 1989 .

[40]  N. Smirnoff,et al.  The biosynthetic pathway of vitamin C in higher plants , 1998, Nature.

[41]  C. Nessler,et al.  Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants , 2000, Molecular Breeding.

[42]  M. Grzęda,et al.  Wlasciwosci, niedobor i zakres zastosowan witaminy C w lecznictwie zwierzat , 2000 .

[43]  E. Vandamme,et al.  Production of vitamins, coenzymes and related biochemicals by biotechnological processes. , 2007, Journal of chemical technology and biotechnology.

[44]  S. Onofri,et al.  Influence of L-galactonic acid γ -lactone on ascorbate production in some yeasts , 1997, Antonie van Leeuwenhoek.

[45]  Jonathan D. Trent,et al.  DNA from Uncultured Organisms as a Source of 2,5-Diketo-d-Gluconic Acid Reductases , 2001, Applied and Environmental Microbiology.

[46]  R. S. Ramteke,et al.  Properties of ascorbic acid and its applications in food processing: a critical appraisal. , 1998 .