Expected Length of the Longest Common Subsequence for Large Alphabets

We consider the length L of the longest common subsequence of two randomly uniformly and independently chosen n character words over a k-ary alphabet. Subadditivity arguments yield that E[L]/n converges to a constant γ k . We prove a conjecture of Sankoff and Mainville from the early 80’s claiming that \(\gamma_{\kappa}\sqrt{k}\longrightarrow 2\) as \(K \longrightarrow \infty\).

[1]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[2]  Gonzalo Navarro,et al.  Bounding the Expected Length of Longest Common Subsequences and Forests , 1999, Theory of Computing Systems.

[3]  V. Chvátal,et al.  Longest common subsequences of two random sequences , 1975, Advances in Applied Probability.

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  J. Kingman Subadditive Ergodic Theory , 1973 .

[6]  Alan Frieze,et al.  On the Length of the Longest Monotone Subsequence in a Random Permutation , 1991 .

[7]  Janko Gravner,et al.  Limit Theorems for Height Fluctuations in a Class of Discrete Space and Time Growth Models , 2000 .

[8]  Timo Seppäläinen,et al.  INCREASING SEQUENCES OF INDEPENDENT POINTS ON THE PLANAR LATTICE , 1997 .

[9]  R. M. Baer,et al.  Natural sorting over permutation spaces , 1968 .

[10]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[11]  Béla Bollobás,et al.  Modern Graph Theory , 2002, Graduate Texts in Mathematics.

[12]  David Sankoff,et al.  Longest common subsequences of two random sequences , 1975, Advances in Applied Probability.

[13]  Pavel A. Pevzner,et al.  Computational molecular biology : an algorithmic approach , 2000 .

[14]  Martin Loebl,et al.  Largest planar matching in random bipartite graphs , 2002, Random Struct. Algorithms.

[15]  Marcos A. Kiwi,et al.  Expected length of the longest common subsequence for large alphabets , 2005 .

[16]  R. Stanley Recent Progress in Algebraic Combinatorics , 2000, math/0010218.

[17]  P. Moerbeke,et al.  Random Matrices and Random Permutations , 2000 .

[18]  B. Logan,et al.  A Variational Problem for Random Young Tableaux , 1977 .

[19]  J. Hammersley A few seedlings of research , 1972 .

[20]  B. Logan,et al.  A Variational Problem for Random Young Tableaux , 1977 .

[21]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[22]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[23]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[24]  P. Diaconis,et al.  Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .

[25]  S. Ross A random graph , 1981 .

[26]  A. Okounkov Random matrices and ramdom permutations , 1999, math/9903176.

[27]  Vladimír Dancík,et al.  Expected length of longest common subsequences , 1994 .

[28]  J. Steele An Efron-Stein inequality for nonsymmetric statistics , 1986 .