Differential equations having orthogonal polynomial solutions

Abstract Necessary and sufficient conditions for an orthogonal polynomial system (OPS) to satisfy a differential equation with polynomial coefficients of the form (∗) L N [y] = ∑ i=1 N l i (x)y (i) (x) = λ n y(x) were found by H.L. Krall. Here, we find new necessary conditions for the equation (∗) to have an OPS of solutions as well as some other interesting applications. In particular, we obtain necessary and sufficient conditions for a distribution w(x) to be an orthogonalizing weight for such an OPS and investigate the structure of w(x). We also show that if the equation (∗) has an OPS of solutions, which is orthogonal relative to a distribution w(x), then the differential operator LN[·] in (∗) must be symmetrizable under certain conditions on w(x).

[1]  F. Trèves Topological vector spaces, distributions and kernels , 1967 .

[2]  Allan M. Krall,et al.  Orthogonal polynomials satisfying fourth order differential equations , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[3]  A. Krall,et al.  Orthogonal polynomials and singular Sturm-Liouville Systems, I , 1986 .

[4]  H. L. Krall,et al.  Certain differential equations for Tchebycheff polynomials , 1938 .

[5]  Lance L. Littiejohn THE KRALL POLYNOMIALS: A NEW CLASS OF ORTHOGONAL POLYNOMIALS , 1982 .

[6]  Kil Hyun Kwon,et al.  CLASSIFICATION OF CLASSICAL ORTHOGONAL POLYNOMIALS , 1997 .

[7]  H. L. Krall,et al.  Differential equations of infinite order for orthogonal polynomials , 1966 .

[8]  K. Kwon,et al.  Hyperfunctional Weights for Orthogonal Polynomials , 1990 .

[9]  J. Aczél Eine Bemerkung über die Charakterisierung der „klassischen” orthogonalen Polynome , 1953 .

[10]  Kil Hyun Kwon,et al.  Characterizations of orthogonal polynomials satisfying differential equations , 1994 .

[11]  Littlejohn LanceL. AN APPLICATION OF A NEW THEOREM ON ORTHOGONAL POLYNOMIALS AND DIFFERENTIAL EQUATIONS , 1986 .

[12]  Kil Hyun Kwon,et al.  Orthogonalizing Weights of Tchebychev Sets of Polynomials , 1992 .

[13]  S. Bochner,et al.  Über Sturm-Liouvillesche Polynomsysteme , 1929 .

[14]  Orthogonal polynomials and higher order singular Sturm-Liouville systems , 1989 .

[15]  Orrin Frink,et al.  A new class of orthogonal polynomials: The Bessel polynomials , 1949 .

[16]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[17]  Roelof Koekoek,et al.  On a differential equation for Koornwinder's generalized Laguerre polynomials , 1991 .

[18]  R. P. Boas,et al.  The Stieltjes moment problem for functions of bounded variation , 1939 .

[19]  Lance L. Littlejohn,et al.  Symmetric and Symmetrisable Differential Expressions , 1990 .

[20]  Antonio J. Durán,et al.  The Stieltjes moments problem for rapidly decreasing functions , 1989 .

[21]  Lance L. Littlejohn,et al.  On the classification of differential equations having orthogonal polynomial solutions , 1984 .

[22]  Peter Lesky,et al.  Die charakterisierung der klassischen orthogonalen polynome durch Sturm-Liouvillesche Differentialgleichungen , 1962 .