Quantum model for impulsive stimulated Raman scattering

The interaction between ultrashort light pulses and non-absorbing materials is dominated by impulsive stimulated Raman scattering (ISRS). The description of ISRS in the context of pump&probe experiments is based on effective classical models describing the interaction between the phonon and pulsed electromagnetic fields. Here we report a theoretical description of ISRS where we do not make any semi-classical approximation and we treat both photonic and phononic degrees of freedom at the quantum level. The results of the quantum model are compared with semiclassical results and validated by means of spectrally resolved pump&probe measurements on α-quartz.

[1]  Angel Rubio,et al.  From a quantum-electrodynamical light–matter description to novel spectroscopies , 2018 .

[2]  Martin Eckstein,et al.  Probing the Fluctuations of Optical Properties in Time-Resolved Spectroscopy. , 2017, Physical review letters.

[3]  M. Kitajima,et al.  Spectrally resolved detection in transient-reflectivity measurements of coherent optical phonons in diamond , 2016, 1603.06023.

[4]  F. Benatti,et al.  Photon number statistics uncover the fluctuations in non-equilibrium lattice dynamics , 2015, Nature Communications.

[5]  I. Timrov,et al.  Coherent phonon coupling to individual Bloch states in photoexcited bismuth. , 2011, Physical review letters.

[6]  S. R. Andrews,et al.  Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons , 2010 .

[7]  P. Loosdrecht,et al.  Ultrafast photoinduced structure phase transition in antimony single crystals , 2009 .

[8]  M. Kitajima,et al.  Fano interference for large-amplitude coherent phonons in bismuth , 2007 .

[9]  M. Kitajima,et al.  Temperature dependence of coherent A1g and Eg phonons of bismuth , 2006 .

[10]  D. Blank,et al.  Polarization-dependent detection of impulsive stimulated Raman scattering in α-quartz , 2005 .

[11]  S. Fahy,et al.  Coherent phonons: electronic softening or anharmonicity? , 2004, Physical review letters.

[12]  R. Merlin,et al.  Coherent phonon generation and the two stimulated Raman tensors , 2002 .

[13]  Shin-ichi Nakashima,et al.  Dynamics of coherent anharmonic phonons in bismuth using high density photoexcitation. , 2002, Physical review letters.

[14]  Roberto Merlin,et al.  Dynamics and coherent control of high-amplitude optical phonons in bismuth , 2001 .

[15]  O. Misochko Coherent phonons and their properties , 2001 .

[16]  Hiroshi Harima,et al.  DYNAMICS OF COHERENT PHONONS IN BISMUTH GENERATED BY ULTRASHORT LASER PULSES , 1998 .

[17]  H. Kawashima,et al.  Optical control over two-dimensional lattice vibrational trajectories in crystalline quartz , 1998 .

[18]  F. Nori,et al.  Phonon squeezed states: quantum noise reduction in solids , 1998, cond-mat/0112011.

[19]  F. Nori,et al.  PHONON SQUEEZED STATES GENERATED BY SECOND-ORDER RAMAN SCATTERING , 1997, cond-mat/9712078.

[20]  Roberto Merlin,et al.  Generating coherent THz phonons with light pulses , 1997 .

[21]  Hiroshi Harima,et al.  Optical control of coherent optical phonons in bismuth films , 1996 .

[22]  Albrecht,et al.  Coherent THz Phonons Driven by Light Pulses and the Sb Problem: What is the Mechanism? , 1996, Physical review letters.

[23]  K. Nelson,et al.  Time-resolved vibrational spectroscopy in the impulsive limit , 1994 .

[24]  R. Righini,et al.  Ultrafast Optical Kerr Effect in Liquids and Solids , 1993, Science.

[25]  Cheng,et al.  Theory for displacive excitation of coherent phonons. , 1992, Physical review. B, Condensed matter.

[26]  K. Nelson,et al.  Impulsive stimulated light scattering , 1988 .

[27]  K. Nelson,et al.  Impulsive stimulated light scattering. I. General theory , 1987 .

[28]  Keith A. Nelson,et al.  Impulsive stimulated scattering: General importance in femtosecond laser pulse interactions with matter, and spectroscopic applications , 1985 .

[29]  J. Scott,et al.  Longitudinal and Transverse Optical Lattice Vibrations in Quartz , 1967 .