A new hybrid methodology for cooperative-coevolutionary optimization of radial basis function networks
暂无分享,去创建一个
Ignacio Rojas | Antonio J. Rivera | Julio Ortega Lopera | María José del Jesus | A. J. Rivera | M. J. D. Jesús | I. Rojas | J. Lopera | M. J. Jesús
[1] Héctor Pomares,et al. A systematic approach to a self-generating fuzzy rule-table for function approximation , 2000, IEEE Trans. Syst. Man Cybern. Part B.
[2] Julio Ortega,et al. Design of RBF Networks by Cooperative/Competitive Evolution of Units , 2001 .
[3] Bart Kosko,et al. Fuzzy function approximation with ellipsoidal rules , 1996, IEEE Trans. Syst. Man Cybern. Part B.
[4] X. Yao. Evolving Artificial Neural Networks , 1999 .
[5] W. Vent,et al. Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .
[6] Ernesto Tarantino,et al. Optimizing Neural Networks for Time Series Prediction , 1999 .
[7] Vladimir Cherkassky,et al. Constrained topological mapping for nonparametric regression analysis , 1991, Neural Networks.
[8] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[9] Roman Rosipal,et al. Prediction of Chaotic Time-Series with a Resource-Allocating RBF Network , 1998, Neural Processing Letters.
[10] David E. Goldberg,et al. Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.
[11] D. Broomhead,et al. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .
[12] Lakhmi C. Jain,et al. Radial Basis Function Networks 2 , 2001 .
[13] Juan Julián Merelo Guervós,et al. Evolved RBF Networks for Time-Series Forecasting and Function Approximation , 2002, PPSN.
[14] Gary B. Lamont,et al. Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.
[15] Richard P. Lippmann,et al. An introduction to computing with neural nets , 1987 .
[16] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Evolutionary Radial Basis Functions for Credit Assessment , 2005, Applied Intelligence.
[17] John C. Platt. A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.
[18] M. J. D. Powell,et al. Radial basis functions for multivariable interpolation: a review , 1987 .
[19] R. Lippmann,et al. An introduction to computing with neural nets , 1987, IEEE ASSP Magazine.
[20] Rivera Rivas,et al. Diseño y optimización de redes de funciones de base radial mediante técnicas bioinspiradas , 2003 .
[21] Simon Haykin,et al. Neural Networks: A Comprehensive Foundation , 1998 .
[22] J. Nazuno. Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .
[23] Sheng Chen,et al. Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks , 1999, IEEE Trans. Neural Networks.
[24] Pedro Ángel Castillo Valdivieso,et al. Optimización de perceptrones multicapa mediante algoritmos evolutivos , 2006 .
[25] Bernard Widrow,et al. 30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.
[26] Peter J. Angeline,et al. An evolutionary algorithm that constructs recurrent neural networks , 1994, IEEE Trans. Neural Networks.
[27] Ignacio Rojas,et al. Co-evolutionary Algorithm for RBF by Self-Organizing Population of Neurons , 2003, IWANN.
[28] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[29] Bruce A. Whitehead,et al. Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction , 1996, IEEE Trans. Neural Networks.
[30] John Moody,et al. Fast Learning in Networks of Locally-Tuned Processing Units , 1989, Neural Computation.
[31] Christian W. Dawson,et al. A review of genetic algorithms applied to training radial basis function networks , 2004, Neural Computing & Applications.
[32] Risto Miikkulainen,et al. Forming Neural Networks Through Efficient and Adaptive Coevolution , 1997, Evolutionary Computation.
[33] L. Glass,et al. Oscillation and chaos in physiological control systems. , 1977, Science.
[34] Marco Tomassini,et al. Soft computing - integrating evolutionary, neural, and fuzzy systems , 2001 .
[35] Héctor Pomares,et al. Multiobjective evolutionary optimization of the size, shape, and position parameters of radial basis function networks for function approximation , 2003, IEEE Trans. Neural Networks.
[36] Richard K. Belew,et al. New Methods for Competitive Coevolution , 1997, Evolutionary Computation.
[37] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Evolutionary Optimization of RBF Networks , 2001, Int. J. Neural Syst..
[38] César Hervás-Martínez,et al. Multi-objective cooperative coevolution of artificial neural networks (multi-objective cooperative networks) , 2002, Neural Networks.
[39] J. Mendel. Fuzzy logic systems for engineering: a tutorial , 1995, Proc. IEEE.
[40] Jerome H. Friedman. Multivariate adaptive regression splines (with discussion) , 1991 .
[41] J. Friedman,et al. Projection Pursuit Regression , 1981 .
[42] André Carlos Ponce de Leon Ferreira de Carvalho,et al. Evolutionary optimization of RBF networks , 2000, Proceedings. Vol.1. Sixth Brazilian Symposium on Neural Networks.
[43] Vladimir Cherkassky,et al. Comparison of adaptive methods for function estimation from samples , 1996, IEEE Trans. Neural Networks.
[44] David S. Broomhead,et al. Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..
[45] Michael Conrad,et al. Combining evolution with credit apportionment: A new learning algorithm for neural nets , 1994, Neural Networks.
[46] Ebrahim H. Mamdani,et al. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..
[47] Kenneth A. De Jong,et al. Cooperative Coevolution: An Architecture for Evolving Coadapted Subcomponents , 2000, Evolutionary Computation.
[48] Hans-Paul Schwefel,et al. Evolution and optimum seeking , 1995, Sixth-generation computer technology series.
[49] H. Bersini,et al. Using incremental learning algorithms in the search for minimal and effective fuzzy models , 1997, Proceedings of 6th International Fuzzy Systems Conference.
[50] J. Friedman. Multivariate adaptive regression splines , 1990 .
[51] Bernhard Sick,et al. Evolutionary optimization of radial basis function classifiers for data mining applications , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[52] Ignacio Rojas,et al. Statistical Analysis of the Main Parameters in the Definition of Radial Bases Function Networks , 1997, IWANN.
[53] P. A. Castillo. Optimizaci on de perceptrones multicapa mediante algoritmos evolutivos , 2006 .
[54] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .