Calcium-tin alloys as anodes for rechargeable non-aqueous calcium-ion batteries at room temperature

[1]  M. Fichtner,et al.  Combining Quinone‐Based Cathode with an Efficient Borate Electrolyte for High‐Performance Magnesium Batteries , 2021, Batteries & Supercaps.

[2]  Jongwoo Lim,et al.  A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries , 2021, Nature Communications.

[3]  Rana Mohtadi,et al.  The metamorphosis of rechargeable magnesium batteries , 2021 .

[4]  G. Moore,et al.  Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice , 2021, Nature communications.

[5]  G. Ceder,et al.  Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization. , 2020, Chemical reviews.

[6]  Yan Yao,et al.  High-power Mg batteries enabled by heterogeneous enolization redox chemistry and weakly coordinating electrolytes , 2020, Nature Energy.

[7]  Bifa Ji,et al.  Recent Advances and Perspectives on Calcium‐Ion Storage: Key Materials and Devices , 2020, Advanced materials.

[8]  R. Dedryvère,et al.  Understanding the nature of the passivation layer enabling reversible calcium plating , 2020, Energy & Environmental Science.

[9]  L. Stievano,et al.  Spectroscopic Insights into the Electrochemical Mechanism of Rechargeable Calcium/Sulfur Batteries , 2020 .

[10]  M. Fichtner,et al.  Rechargeable Calcium-Sulfur Batteries Enabled by an Efficient Borate-Based Electrolyte. , 2020, Small.

[11]  D. Aurbach,et al.  Current status and future directions of multivalent metal-ion batteries , 2020, Nature Energy.

[12]  M. Fichtner,et al.  Multi‐Electron Reactions Enabled by Anion‐Based Redox Chemistry for High‐Energy Multivalent Rechargeable Batteries , 2020, Angewandte Chemie.

[13]  J. Grdadolnik,et al.  Electrochemical Performance and Mechanism of Calcium Metal‐Organic Battery , 2020 .

[14]  M. Fichtner,et al.  Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries , 2019, Energy & Environmental Science.

[15]  M. R. Palacín,et al.  Achievements, Challenges, and Prospects of Calcium Batteries. , 2019, Chemical reviews.

[16]  Alexandre Ponrouch,et al.  Post-Li batteries: promises and challenges , 2019, Philosophical Transactions of the Royal Society A.

[17]  M. R. Palacín,et al.  Multivalent rechargeable batteries , 2019, Energy Storage Materials.

[18]  M. R. Palacín,et al.  Multivalent Batteries—Prospects for High Energy Density: Ca Batteries , 2019, Front. Chem..

[19]  Xiaohe Song,et al.  A Calcium‐Ion Hybrid Energy Storage Device with High Capacity and Long Cycling Life under Room Temperature , 2019, Advanced Energy Materials.

[20]  Jou-Hyeon Ahn,et al.  A self-healing Sn anode with an ultra-long cycle life for sodium-ion batteries , 2018 .

[21]  Alán Aspuru-Guzik,et al.  Discovery of Calcium‐Metal Alloy Anodes for Reversible Ca‐Ion Batteries , 2018, Advanced Energy Materials.

[22]  M. Cabello,et al.  Applicability of Molybdite as an Electrode Material in Calcium Batteries: A Structural Study of Layer-type CaxMoO3 , 2018, Chemistry of Materials.

[23]  R. J. Gummow,et al.  Calcium‐Ion Batteries: Current State‐of‐the‐Art and Future Perspectives , 2018, Advanced materials.

[24]  M. R. Palacín,et al.  On the road toward calcium-based batteries , 2018, Current Opinion in Electrochemistry.

[25]  Hui‐Ming Cheng,et al.  Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage , 2018, Nature Chemistry.

[26]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[27]  J. Grdadolnik,et al.  Probing electrochemical reactions in organic cathode materials via in operando infrared spectroscopy , 2018, Nature Communications.

[28]  P. Bruce,et al.  Plating and stripping calcium in an organic electrolyte. , 2018, Nature materials.

[29]  Kang Xu,et al.  Reversible S0 /MgSx Redox Chemistry in a MgTFSI2 /MgCl2 /DME Electrolyte for Rechargeable Mg/S Batteries. , 2017, Angewandte Chemie.

[30]  M. R. Palacín,et al.  On the Reliability of Half-Cell Tests for Monovalent (Li+, Na+) and Divalent (Mg2+, Ca2+) Cation Based Batteries , 2017 .

[31]  Linda F. Nazar,et al.  A high capacity thiospinel cathode for Mg batteries , 2016 .

[32]  Carlos Frontera,et al.  Assessing Si-based anodes for Ca-ion batteries: Electrochemical decalciation of CaSi2 , 2016 .

[33]  M. R. Palacín,et al.  Towards a calcium-based rechargeable battery. , 2016, Nature materials.

[34]  J. Tarascon,et al.  Sustainability and in situ monitoring in battery development. , 2016, Nature materials.

[35]  John T. Vaughey,et al.  Rechargeable Ca-Ion Batteries: A New Energy Storage System , 2015 .

[36]  R. Dominko,et al.  Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries. , 2015, ChemSusChem.

[37]  Emmanuel C. Alozie,et al.  Promises and Challenges , 2015 .

[38]  J. Tarascon,et al.  Towards greener and more sustainable batteries for electrical energy storage. , 2015, Nature chemistry.

[39]  B. Predel Ca - Sn (Calcium - Tin) , 2012 .

[40]  Zi-kui Liu,et al.  Thermodynamic modeling of the Ca-Sn system based on finite temperature quantities from first-principles and experiment , 2006 .

[41]  A. Palenzona,et al.  Phase diagram of the Ca–Sn system , 2000 .

[42]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[43]  R. D. Foltz CRC Handbook of Chemistry and Physics:A Ready-Reference Book of Chemical and Physical Data , 2000 .

[44]  Takakazu Yamamoto,et al.  Poly(anthraquinone)s Having a .pi.-Conjugation System along the Main Chain. Synthesis by Organometallic Polycondensation, Redox Behavior, and Optical Properties , 1995 .