Middle Miocene ice sheet dynamics, deep‐sea temperatures, and carbon cycling: A Southern Ocean perspective

Relative contributions of ice volume and temperature change to the global ∼1‰ δ18O increase at ∼14 Ma are required for understanding feedbacks involved in this major Cenozoic climate transition. A 3‐ma benthic foraminifer Mg/Ca record of Southern Ocean temperatures across the middle Miocene climate transition reveals ∼2 ± 2°C cooling (14.2–13.8 Ma), indicating that ∼70% of the increase relates to ice growth. Seawater δ18O, calculated from Mg/Ca and δ18O, suggests that at ∼15 Ma Antarctica's cryosphere entered an interval of apparent eccentricity‐paced expansion. Glaciations increased in intensity, revealing a central role for internal climate feedbacks. Comparison of ice volume and ocean temperature records with inferred pCO2 levels indicates that middle Miocene cryosphere expansion commenced during an interval of Southern Ocean warmth and low atmospheric pCO2. The Antarctic system appears sensitive to changes in heat/moisture supply when atmospheric pCO2 was low, suggesting the importance of internal feedbacks in this climate transition.

[1]  M. Schulz,et al.  Orbitally-paced climate evolution during the middle Miocene “Monterey” carbon-isotope excursion , 2007 .

[2]  T. Marchitto,et al.  Mg/Ca temperature calibration for the benthic foraminifer Cibicidoides pachyderma , 2007 .

[3]  Henry Elderfield,et al.  Calibrations for benthic foraminiferal Mg/Ca paleothermometry and the carbonate ion hypothesis , 2006 .

[4]  D. Marchant,et al.  The age and origin of the Labyrinth, western Dry Valleys, Antarctica: Evidence for extensive middle Miocene subglacial floods and freshwater discharge to the Southern Ocean , 2006 .

[5]  K. Miller,et al.  The Phanerozoic Record of Global Sea-Level Change , 2005, Science.

[6]  Michael Schulz,et al.  Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion , 2005, Nature.

[7]  I. Vlastelic,et al.  Miocene climate change recorded in the chemical and isotopic (Pb, Nd, Hf) signature of Southern Ocean sediments , 2005 .

[8]  Caroline H. Lear,et al.  Late Eocene to early Miocene ice sheet dynamics and the global carbon cycle , 2004 .

[9]  D. Lea,et al.  Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion , 2004, Science.

[10]  M. Mutti,et al.  δ18O and Marion Plateau backstripping: Combining two approaches to constrain late middle Miocene eustatic amplitude , 2004 .

[11]  D. Sugden,et al.  Cenozoic landscape evolution of the Convoy Range to Mackay Glacier area, Transantarctic Mountains: Onshore to offshore synthesis , 2004 .

[12]  A. Shevenell,et al.  Paleoceanographic Change During the Middle Miocene Climate Revolution: An Antarctic Stable Isotope Perspective , 2004 .

[13]  D. Lea 6.14 – Elemental and Isotopic Proxies of Past Ocean Temperatures , 2003 .

[14]  Michael W. Wara,et al.  A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum , 2003, Science.

[15]  J. Wright,et al.  The closing of a seaway: ocean water masses and global climate change , 2003 .

[16]  David Pollard,et al.  Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2 , 2003, Nature.

[17]  D. Schrag,et al.  Application of benthic foraminiferal Mg/Ca ratios to questions of Cenozoic climate change , 2002 .

[18]  Niall C. Slowey,et al.  Benthic foraminiferal Mg/Ca-paleothermometry: a revised core-top calibration , 2002 .

[19]  D. Rowley Rate of plate creation and destruction: 180 Ma to present , 2002 .

[20]  M. Sarnthein,et al.  Quaternary deep sea temperature histories derived from benthic foraminiferal Mg/Ca , 2002 .

[21]  D. Schrag,et al.  Paleotemperatures and ice volume of the past 27 Myr revisited with paired Mg/Ca and 18O/16O measurements on benthic foraminifera , 2002 .

[22]  James P. Kennett,et al.  The Tasmanian Gateway: Cenozoic Climatic and Oceanographic Development , 2001 .

[23]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[24]  Michelle A. Kominz,et al.  Oligocene eustasy from two-dimensional sequence stratigraphic backstripping , 2001 .

[25]  N. Shackleton,et al.  The 100,000-year ice-Age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity , 2000, Science.

[26]  D. Lea,et al.  Climate impact of late quaternary equatorial pacific sea surface temperature variations , 2000, Science.

[27]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[28]  H. Elderfield,et al.  Cenozoic deep-Sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite , 2000, Science.

[29]  Michael A. Arthur,et al.  Miocene evolution of atmospheric carbon dioxide , 1999 .

[30]  J. Lynch‐Stieglitz,et al.  A geostrophic transport estimate for the Florida Current from the oxygen isotope composition of benthic foraminifera , 1999 .

[31]  S. Stanley,et al.  Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry , 1998 .

[32]  P. Martin,et al.  A RAPID MASS SPECTROMETRIC METHOD FOR THE SIMULTANEOUS ANALYSIS OF BARIUM,CADMIUM, AND STRONTIUM IN FORAMINIFERA SHELLS , 1996 .

[33]  B. Flower,et al.  The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling , 1994 .

[34]  D. Sugden,et al.  Miocene Glacial Stratigraphy and Landscape Evolution of the Western Asgard Range, Antarctica , 1993 .

[35]  E. Boyle,et al.  Determination of carbonate-bound barium in foraminifera and corals by isotope dilution plasma-mass spectrometry , 1993 .

[36]  S. Savin,et al.  Mid‐Miocene isotope stratigraphy in the deep sea: High‐resolution correlations, paleoclimatic cycles, and sediment preservation , 1991 .

[37]  James D. Wright,et al.  Unlocking the Ice House: Oligocene‐Miocene oxygen isotopes, eustasy, and margin erosion , 1991 .

[38]  R. Matthews,et al.  Tertiary ice sheet dynamics: The Snow Gun Hypothesis , 1991 .

[39]  R. Fairbanks,et al.  Evolution of Modern Deepwater Circulation: Evidence from the Late Miocene Southern Ocean , 1991 .

[40]  K. Miller,et al.  Miocene isotope reference section, Deep Sea Drilling Project Site 608: An evaluation of isotope and biostratigraphic resolution , 1991 .

[41]  J. Kennett,et al.  Latest Cretaceous to Cenozoic Climate and Oceanographic Developments in the Weddell Sea, Antarctica: an Ocean-Drilling Perspective , 1990 .

[42]  B. Wilkinson,et al.  Sedimentary carbonate record of calcium-magnesium cycling , 1989 .

[43]  S. Savin,et al.  Miocene deepwater oceanography , 1989 .

[44]  B. Haq,et al.  Chronology of Fluctuating Sea Levels Since the Triassic , 1987, Science.

[45]  R. Fairbanks,et al.  Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion , 1987 .

[46]  Edward A. Boyle,et al.  Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years : changes in deep ocean circulation and chemical inventories , 1985 .

[47]  R. Poore,et al.  Tertiary δ18O record and glacio-eustatic sea-level fluctuations , 1980 .

[48]  D. Schnitker North Atlantic oceanography as possible cause of Antarctic glaciation and eutrophication , 1980, Nature.

[49]  Nicholas J Shackleton,et al.  Oxygen Isotope and Palaeomagnetic Stratigraphy of Equatorial Pacific Core V28-238: Oxygen Isotope Temperatures and Ice Volumes on a 105 Year and 106 Year Scale , 1973, Quaternary Research.

[50]  R. Clayton,et al.  Oxygen isotope fractionation in divalent metal carbonates , 1969 .

[51]  S. Margolis 30. PALEOGLACIAL HISTORY OF ANTARCTICA INFERRED FROM ANALYSIS OF LEG 29 SEDIMENTS BY SCANNING-ELECTRON MICROSCOPY , 2007 .

[52]  K. Hsü GENESIS OF THE TETHYS AND THE MEDITERRANEAN , 2006 .

[53]  K. Hsü 49. GENESIS OF THE TETHYS AND THE MEDITERRANEAN , 2006 .

[54]  J. Kennett,et al.  The Cenozoic Southern Ocean : tectonics, sedimentation, and climate change between Australia and Antarctica , 2004 .

[55]  John B. Anderson,et al.  Antarctic Marine Geology , 1999 .

[56]  L. Gahagan,et al.  The development of paleoseaways around Antarctica , 1992 .

[57]  Wallace S. Broecker,et al.  The Carbon cycle and atmospheric CO[2] : natural variations Archean to present , 1985 .

[58]  M. Srinivasan,et al.  Miocene planktonic foraminiferal biogeography and paleoceanographic development of the Indo-Pacific region , 1985 .

[59]  C. Murphy,et al.  The depth of the ocean through the Neogene , 1985 .

[60]  N. Shackleton,et al.  Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279 and 281 , 1975 .