Preference for concentric orientations in the mouse superior colliculus

The superior colliculus is a layered structure important for body- and gaze-orienting responses. Its superficial layer is, next to the lateral geniculate nucleus, the second major target of retinal ganglion axons and is retinotopically organized. Here we show that in the mouse there is also a precise organization of orientation preference. In columns perpendicular to the tectal surface, neurons respond to the same visual location and prefer gratings of the same orientation. Calcium imaging and extracellular recording revealed that the preferred grating varies with retinotopic location, and is oriented parallel to the concentric circle around the centre of vision through the receptive field. This implies that not all orientations are equally represented across the visual field. This makes the superior colliculus different from visual cortex and unsuitable for translation-invariant object recognition and suggests that visual stimuli might have different behavioural consequences depending on their retinotopic location.

[1]  E. J. Morris,et al.  Visual motion processing and sensory-motor integration for smooth pursuit eye movements. , 1987, Annual review of neuroscience.

[2]  Stephen D. Van Hooser,et al.  Orientation Selectivity without Orientation Maps in Visual Cortex of a Highly Visual Mammal , 2005, The Journal of Neuroscience.

[3]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[4]  Leonard E. White,et al.  Vision and Cortical Map Development , 2007, Neuron.

[5]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[6]  C. Niell,et al.  What can mice tell us about how vision works? , 2011, Trends in Neurosciences.

[7]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  C. R. Michael,et al.  Functional organization of cells in superior colliculus of the ground squirrel. , 1972, Journal of neurophysiology.

[9]  P. Dean,et al.  Event or emergency? Two response systems in the mammalian superior colliculus , 1989, Trends in Neurosciences.

[10]  M. Cynader,et al.  Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. , 1974, Journal of neurophysiology.

[11]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[12]  I. Thompson,et al.  Emergent Properties of the Optic Tectum Revealed by Population Analysis of Direction and Orientation Selectivity , 2013, The Journal of Neuroscience.

[13]  Edward M. Callaway,et al.  A dedicated circuit linking direction selective retinal ganglion cells to primary visual cortex , 2014, Nature.

[14]  Nathan C. Klapoetke,et al.  A High-Light Sensitivity Optical Neural Silencer: Development and Application to Optogenetic Control of Non-Human Primate Cortex , 2010, Front. Syst. Neurosci..

[15]  Jianhua Cang,et al.  Visual Receptive Field Properties of Neurons in the Superficial Superior Colliculus of the Mouse , 2010, The Journal of Neuroscience.

[16]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[17]  J. Sanes,et al.  Laminar Restriction of Retinal Ganglion Cell Dendrites and Axons: Subtype-Specific Developmental Patterns Revealed with Transgenic Markers , 2010, The Journal of Neuroscience.

[18]  Ian Nauhaus,et al.  Anterior-Posterior Direction Opponency in the Superficial Mouse Lateral Geniculate Nucleus , 2012, Neuron.

[19]  M. Meister,et al.  Orientation columns in the mouse superior colliculus , 2014, Nature.

[20]  R. Lund,et al.  Most superficial sublamina of rat superior colliculus: neuronal response properties and correlates with perceptual figure-ground segregation. , 2007, Journal of neurophysiology.

[21]  P Sterling,et al.  Influence of visual cortex on receptive fields in the superior colliculus of the cat. , 1969, Journal of neurophysiology.

[22]  R. Bauer,et al.  Complementary global maps for orientation coding in upper and lower layers of the monkey's foveal striate cortex , 2004, Experimental Brain Research.

[23]  Ben A. Barres,et al.  Transgenic Mice Reveal Unexpected Diversity of On-Off Direction-Selective Retinal Ganglion Cell Subtypes and Brain Structures Involved in Motion Processing , 2011, The Journal of Neuroscience.

[24]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[25]  A. Huberman,et al.  Architecture and Activity-Mediated Refinement of Axonal Projections from a Mosaic of Genetically Identified Retinal Ganglion Cells , 2008, Neuron.

[26]  U. Dräger,et al.  Depth segregation of retinal ganglion cells projecting to mouse superior colliculus , 1985, The Journal of comparative neurology.

[27]  Adam Bleckert,et al.  Visual Space Is Represented by Nonmatching Topographies of Distinct Mouse Retinal Ganglion Cell Types , 2014, Current Biology.

[28]  Zoe Kourtzi,et al.  Directional anisotropy of motion responses in retinotopic cortex , 2009, Human brain mapping.

[29]  A. Leventhal,et al.  Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Edward M. Callaway,et al.  A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex , 2014 .

[31]  P. May The mammalian superior colliculus: laminar structure and connections. , 2006, Progress in brain research.

[32]  Quanxin Wang,et al.  Stream-Related Preferences of Inputs to the Superior Colliculus from Areas of Dorsal and Ventral Streams of Mouse Visual Cortex , 2013, The Journal of Neuroscience.

[33]  Richard J Krauzlis,et al.  Neuronal Activity in the Rostral Superior Colliculus Related to the Initiation of Pursuit and Saccadic Eye Movements , 2003, The Journal of Neuroscience.

[34]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[35]  Michael P Stryker,et al.  Roles of Ephrin-As and Structured Activity in the Development of Functional Maps in the Superior Colliculus , 2008, The Journal of Neuroscience.

[36]  Hui Chen,et al.  Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[37]  Alison S. Walker,et al.  Parametric Functional Maps of Visual Inputs to the Tectum , 2012, Neuron.

[38]  C. R. Michael Visual receptive fields of single neurons in superior colliculus of the ground squirrel. , 1972, Journal of neurophysiology.

[39]  W. R. Levick,et al.  Orientation bias of brisk-transient y-cells of the cat retina for drifting and alternating gratings , 2004, Experimental Brain Research.

[40]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[41]  Alexandre Zénon,et al.  Attention deficits without cortical neuronal deficits , 2012, Nature.

[42]  Gidon Felsen,et al.  Neural Substrates of Sensory-Guided Locomotor Decisions in the Rat Superior Colliculus , 2008, Neuron.

[43]  Richard J Krauzlis,et al.  Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments , 2010, Nature Neuroscience.

[44]  Tobias Bonhoeffer,et al.  Altered Map of Visual Space in the Superior Colliculus of Mice Lacking Early Retinal Waves , 2005, The Journal of Neuroscience.

[45]  Masahito Yamagata,et al.  Retinal Ganglion Cells with Distinct Directional Preferences Differ in Molecular Identity, Structure, and Central Projections , 2011, The Journal of Neuroscience.

[46]  T. Salt,et al.  Corticofugal influences on visual responses in cat superior colliculus: The role of NMDA receptors , 1996, Visual Neuroscience.

[47]  Benjamin A Rowland,et al.  Organization and plasticity in multisensory integration: early and late experience affects its governing principles. , 2011, Progress in brain research.

[48]  V. Ferrera,et al.  Radial motion bias in macaque frontal eye field , 2006, Visual Neuroscience.

[49]  M. T. Wallace,et al.  Visual, auditory and somatosensory convergence in output neurons of the cat superior colliculus: multisensory properties of the tecto-reticulo-spinal projection , 2005, Experimental Brain Research.

[50]  David S. Greenberg,et al.  Rats maintain an overhead binocular field at the expense of constant fusion , 2013, Nature.

[51]  F. Prévost,et al.  Spatio-temporal receptive field properties of cells in the rat superior colliculus , 2007, Brain Research.

[52]  Klaus Schulten,et al.  Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison , 1995, Neural Computation.

[53]  Onkar S. Dhande,et al.  Retinal ganglion cell maps in the brain: implications for visual processing , 2014, Current Opinion in Neurobiology.

[54]  C. Niell,et al.  Functional Imaging Reveals Rapid Development of Visual Response Properties in the Zebrafish Tectum , 2005, Neuron.

[55]  C. Levelt,et al.  Screening mouse vision with intrinsic signal optical imaging , 2007, The European journal of neuroscience.

[56]  Dmitri B. Chklovskii,et al.  Orientation Preference Patterns in Mammalian Visual Cortex A Wire Length Minimization Approach , 2001, Neuron.

[57]  D. Hubel,et al.  Physiology of visual cells in mouse superior colliculus and correlation with somatosensory and auditory input , 1975, Nature.

[58]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[59]  C. Levelt,et al.  Contrast gain control and cortical TrkB signaling shape visual acuity , 2010, Nature Neuroscience.

[60]  D. Ringach,et al.  Retinal origin of orientation maps in visual cortex , 2011, Nature Neuroscience.