Scalable Processing of Low-Temperature TiO2 Nanoparticles for High-Efficiency Perovskite Solar Cells

Most high-efficiency perovskite solar cells (PSCs) rely on titanium dioxide (TiO 2 ) electron transport layers (ETLs) that are usually processed at high temperature (>450 °C). Consequently, a fully solution-based process of PSCs with TiO 2 ETL on inexpensive flexible polymer substrates is not feasible. Therefore, a scalable low-temperature TiO 2 ETL is developed based on presynthesized crystalline nanoparticle TiO 2 (np-TiO 2 ). The presented synthesis process offers control over the doping, the hydrodynamic diameter, and the solvent of the np-TiO 2 . High initial power conversion efficiency (PCE) of 19.5% (stabilized at 18.2%) of PSC processed on the np-TiO 2 ETL is demonstrated with spin-coated methylammonium lead iodide (CH 3 NH 3 PbI 3 ). Furthermore, it is shown that other perovskite absorber layers that include evaporated CH 3 NH 3 PbI 3 and triple cation perovskite, Cs 0.1 (MA 0.17 FA 0.83 ) 0.9 Pb(I 0.83 Br 0.17 ) 3 , also show very high initial PCE, 14.5% and 19%, respectively. The possibility of doping the np-TiO 2 with niobium (Nb 5+ ) also reduces the resistance of the np-TiO 2 ETL, allowing for thick ETLs that are beneficial for rough substrates. Facile upscaling of the deposition of the np-TiO 2 ETL by inkjet printing, blade coating, and slot-die coating is also demonstrated, having high uniformity, resulting in prototype PSCs with a stable PCE > 15%.

[1]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[2]  Jingjing Zhao,et al.  Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules , 2018 .

[3]  Yanlin Song,et al.  Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells , 2018 .

[4]  M. Biber,et al.  Inverted planar perovskite solar cells based on Al doped ZnO substrate , 2018 .

[5]  Ronn Andriessen,et al.  Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating , 2017, Solar Energy Materials and Solar Cells.

[6]  Y. Qi,et al.  Advances and challenges to the commercialization of organic–inorganic halide perovskite solar cell technology , 2017 .

[7]  C. Kübel,et al.  Toward new gas-analytical multisensor chips based on titanium oxide nanotube array , 2017, Scientific Reports.

[8]  James E. Bishop,et al.  Spray-cast multilayer perovskite solar cells with an active-area of 1.5 cm2 , 2017, Scientific Reports.

[9]  Maarten Debucquoy,et al.  Four‐Terminal Perovskite/Silicon Multijunction Solar Modules , 2017 .

[10]  P. Kamat,et al.  A Victim of Halide Ion Segregation. How Light Soaking Affects Solar Cell Performance of Mixed Halide Lead Perovskites , 2017 .

[11]  Kai Zhu,et al.  Perovskite Solar Cells—Towards Commercialization , 2017 .

[12]  V. Zardetto,et al.  Plasma-assisted atomic layer deposition of TiO2 compact layers for flexible mesostructured perovskite solar cells , 2017 .

[13]  K. Catchpole,et al.  Rubidium Multication Perovskite with Optimized Bandgap for Perovskite‐Silicon Tandem with over 26% Efficiency , 2017 .

[14]  W. Tress Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Success Story of High Open‐Circuit Voltage and Low Recombination , 2017 .

[15]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[16]  Kenjiro Miyano,et al.  NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility , 2017, ACS omega.

[17]  Hong Jiang,et al.  Enhancing Efficiency and Stability of Perovskite Solar Cells through Nb-Doping of TiO2 at Low Temperature. , 2017, ACS applied materials & interfaces.

[18]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[19]  Juntao Li,et al.  Efficient Indium‐Doped TiOx Electron Transport Layers for High‐Performance Perovskite Solar Cells and Perovskite‐Silicon Tandems , 2017 .

[20]  B. Rech,et al.  Perovskite solar cells: On top of commercial photovoltaics , 2017, Nature Energy.

[21]  A. Tiwari,et al.  High-efficiency inverted semi-transparent planar perovskite solar cells in substrate configuration , 2016, Nature Energy.

[22]  F. Giustino,et al.  Toward Lead-Free Perovskite Solar Cells , 2016 .

[23]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[24]  A. Walsh,et al.  Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? , 2016, ACS energy letters.

[25]  A. Carlo,et al.  Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology , 2016 .

[26]  Paul Heremans,et al.  Nonhazardous Solvent Systems for Processing Perovskite Photovoltaics , 2016 .

[27]  Jinsong Huang,et al.  Air‐Stable, Efficient Mixed‐Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer , 2016 .

[28]  Yang Yang,et al.  Low-Temperature TiOx Compact Layer for Planar Heterojunction Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[29]  Jay B. Patel,et al.  Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells , 2016 .

[30]  Heping Shen,et al.  Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[31]  Kai Zhu,et al.  Origin of J-V Hysteresis in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[32]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[33]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[34]  Yu Cheng,et al.  Radio Frequency Magnetron Sputtering Deposition of TiO2 Thin Films and Their Perovskite Solar Cell Applications , 2015, Scientific Reports.

[35]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[36]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[37]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[38]  Sundaram Senthilarasu,et al.  Inkjet-printed TiO2 nanoparticles from aqueous solutions for dye-sensitized solar cells (DSSCs) , 2015 .

[39]  Dong Hoe Kim,et al.  Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells. , 2015, ChemSusChem.

[40]  Zhibin Yang,et al.  High‐Performance Fully Printable Perovskite Solar Cells via Blade‐Coating Technique under the Ambient Condition , 2015 .

[41]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[42]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[43]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[44]  Prashant V Kamat,et al.  Best Practices in Perovskite Solar Cell Efficiency Measurements. Avoiding the Error of Making Bad Cells Look Good. , 2015, The journal of physical chemistry letters.

[45]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[46]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[47]  Henk J. Bolink,et al.  Flexible high efficiency perovskite solar cells , 2014 .

[48]  R. Li,et al.  Benzyl alcohol-based synthesis of oxide nanoparticles: the perspective of S(N)1 reaction mechanism. , 2013, Dalton transactions.

[49]  Han‐Ki Kim,et al.  d-orbital ordering of oxygen-deficient amorphous and anatase TiO2−x channels for high mobility thin film transistors , 2013 .

[50]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[51]  Jin Young Kim,et al.  Nb-Doped TiO2: A New Compact Layer Material for TiO2 Dye-Sensitized Solar Cells , 2009 .

[52]  John Wang,et al.  Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles , 2007 .

[53]  A. Shard,et al.  ARXPS characterisation of plasma polymerised surface chemical gradients , 2006 .

[54]  Bryce S. Richards,et al.  Comparison of TiO2 and other dielectric coatings for buried‐contact solar cells: a review , 2004 .

[55]  G. Stucky,et al.  Benzyl alcohol and titanium tetrachloride - A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles , 2002 .

[56]  N. Serpone,et al.  Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor? , 1995 .