An improved method for multi-objective clustering ensemble algorithm

In this paper, we present a cluster algorithm which is an improvement of the multi-objective clustering ensemble algorithm (MOCLE), which is denoted as IMOCLE for short. First, we introduce a new clustering objective function to measure the individual difference in the optimization process so as to remain the diversity of the population. Then, a clustering ensemble technique is applied to MOCLE to obtain more competitive individual. The proposed algorithm can also ensure good partitions not be eliminated. The performance of the proposed algorithm has been compared with MOCLE over a suit of gene datasets. The experimental results show that, the superiority of the proposed method in terms of capability found the optimum number of clusters, and accuracy.

[1]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[2]  Yi Zhang,et al.  Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative. , 2006, The Journal of molecular diagnostics : JMD.

[3]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[4]  Sandro Vega-Pons,et al.  Weighted partition consensus via kernels , 2010, Pattern Recognit..

[5]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Multi-objective clustering ensemble for gene expression data analysis , 2009, Neurocomputing.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Mohamed S. Kamel,et al.  On voting-based consensus of cluster ensembles , 2010, Pattern Recognit..

[8]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[9]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[11]  Douglas B. Kell,et al.  Computational cluster validation in post-genomic data analysis , 2005, Bioinform..

[12]  S. Ramaswamy,et al.  Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. , 2002, Cancer research.

[13]  Anil K. Jain,et al.  Multiobjective data clustering , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[14]  J. William Ahwood,et al.  CLASSIFICATION , 1931, Foundations of Familiar Language.

[15]  Torben F. Ørntoft,et al.  Identifying distinct classes of bladder carcinoma using microarrays , 2003, Nature Genetics.

[16]  E. Lander,et al.  MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia , 2002, Nature Genetics.

[17]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[18]  L. Aaltonen,et al.  Serrated carcinomas form a subclass of colorectal cancer with distinct molecular basis , 2007, Oncogene.

[19]  Ravindra Jain,et al.  A hybrid clustering algorithm for data mining , 2012, ArXiv.

[20]  Xi Wang,et al.  Clustering aggregation by probability accumulation , 2009, Pattern Recognit..

[21]  Ludmila I. Kuncheva,et al.  Experimental Comparison of Cluster Ensemble Methods , 2006, 2006 9th International Conference on Information Fusion.

[22]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[23]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[24]  Ludmila I. Kuncheva,et al.  Moderate diversity for better cluster ensembles , 2006, Inf. Fusion.

[25]  Dejan Juric,et al.  Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. , 2005, Cancer research.

[26]  Joshua D. Knowles,et al.  An Evolutionary Approach to Multiobjective Clustering , 2007, IEEE Transactions on Evolutionary Computation.

[27]  Vipin Kumar,et al.  Multilevel Algorithms for Multi-Constraint Graph Partitioning , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[28]  André Carlos Ponce de Leon Ferreira de Carvalho,et al.  Multi-Objective Clustering Ensemble , 2006, 2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06).

[29]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[30]  G. W. Milligan,et al.  A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis. , 1986, Multivariate behavioral research.

[31]  G. W. Milligan,et al.  A study of standardization of variables in cluster analysis , 1988 .

[32]  R. Spang,et al.  Predicting the clinical status of human breast cancer by using gene expression profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[34]  Sanghamitra Bandyopadhyay,et al.  A symmetry based multiobjective clustering technique for automatic evolution of clusters , 2010, Pattern Recognit..