Analysis of two-component signal transduction by mathematical modeling using the KdpD/KdpE system of Escherichia coli.

[1]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[2]  W. Epstein,et al.  Potassium Transport Loci in Escherichia coli K-12 , 1971, Journal of bacteriology.

[3]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[4]  John W. Hearne,et al.  Sensitivity analysis of parameter combinations , 1985 .

[5]  J. Stock,et al.  Signal transduction in bacteria , 1990, Nature.

[6]  M. Simon,et al.  Signal transduction pathways involving protein phosphorylation in prokaryotes. , 1991, Annual review of biochemistry.

[7]  T. Mizuno,et al.  Clarification of the structural and functional features of the osmoregulated kdp operon of Escherichia coli , 1992, Molecular microbiology.

[8]  J. S. Parkinson,et al.  Communication modules in bacterial signaling proteins. , 1992, Annual review of genetics.

[9]  W. Epstein,et al.  The products of the kdpDE operon are required for expression of the Kdp ATPase of Escherichia coli , 1992, Journal of bacteriology.

[10]  K. Altendorf,et al.  KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators , 1992, Journal of bacteriology.

[11]  J. S. Parkinson Signal transduction schemes of bacteria , 1993, Cell.

[12]  A. Tartakoff Advances in cell and molecular biology of membranes and organelles , 1994 .

[13]  J. Sun,et al.  Identification of the epitope for monoclonal antibody 4B1 which uncouples lactose and proton translocation in the lactose permease of Escherichia coli. , 1996, Biochemistry.

[14]  K. Altendorf,et al.  Characterization of Truncated Forms of the KdpD Protein, the Sensor Kinase of the K+-translocating Kdp System of Escherichia coli* , 1996, The Journal of Biological Chemistry.

[15]  Barry L. Wanner,et al.  Kinetic Comparison of the Specificity of the Vancomycin Resistance Kinase VanS for Two Response Regulators, VanR and PhoB† , 1996 .

[16]  J. Keasling,et al.  Mathematical Model of the lac Operon: Inducer Exclusion, Catabolite Repression, and Diauxic Growth on Glucose and Lactose , 1997, Biotechnology progress.

[17]  K. Jung,et al.  Purification, Reconstitution, and Characterization of KdpD, the Turgor Sensor of Escherichia coli * , 1997, The Journal of Biological Chemistry.

[18]  B. T. Koh,et al.  Genetically structured mathematical modeling of trp attenuator mechanism. , 1998, Biotechnology and bioengineering.

[19]  J. Keasling,et al.  A Dynamic Model of theEscherichia coliPhosphate-Starvation Response , 1998 .

[20]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[21]  Ann M Stock,et al.  Two-component signal transduction. , 2000, Annual review of biochemistry.

[22]  E. Gilles,et al.  The organization of metabolic reaction networks: a signal-oriented approach to cellular models. , 2000, Metabolic engineering.

[23]  E. Gilles,et al.  The organization of metabolic reaction networks. II. Signal processing in hierarchical structured functional units. , 2001, Metabolic engineering.

[24]  E. Gilles,et al.  The organization of metabolic reaction networks. III. Application for diauxic growth on glucose and lactose. , 2001, Metabolic engineering.

[25]  Kirsten Jung,et al.  Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. , 2002, Journal of molecular microbiology and biotechnology.

[26]  R. Heermann,et al.  The N-terminal Input Domain of the Sensor Kinase KdpD of Escherichia coli Stabilizes the Interaction between the Cognate Response Regulator KdpE and the Corresponding DNA-binding Site* , 2003, Journal of Biological Chemistry.

[27]  Julio Saez-Rodriguez,et al.  Dissecting the puzzle of life: modularization of signal transduction networks , 2005, Comput. Chem. Eng..