Image Processing in the Semidiscrete Group of Rototranslations

It is well-known, since [12], that cells in the primary visual cortex V1 do much more than merely signaling position in the visual field: most cortical cells signal the local orientation of a contrast edge or bar – they are tuned to a particular local orientation. This orientation tuning has been given a mathematical interpretation in a sub-Riemannian model by Petitot, Citti, and Sarti [6, 14]. According to this model, the primary visual cortex V1 lifts grey-scale images, given as functions \(f:{\mathbb R}^2\rightarrow [0,1]\), to functions Lf defined on the projectivized tangent bundle of the plane \(PT\mathbb R^2 = \mathbb R^2\times \mathbb P^1\). Recently, in [1], the authors presented a promising semidiscrete variant of this model where the Euclidean group of rototranslations SE(2), which is the double covering of \(PT\mathbb R^2\), is replaced by SE(2, N), the group of translations and discrete rotations. In particular, in [15], an implementation of this model allowed for state-of-the-art image inpaintings.

[1]  Ramakrishna Kakarala The Bispectrum as a Source of Phase-Sensitive Invariants for Fourier Descriptors: A Group-Theoretic Approach , 2012, Journal of Mathematical Imaging and Vision.

[2]  Francesco Rossi,et al.  Existence of planar curves minimizing length and curvature , 2009, 0906.5290.

[3]  Shlomo Dubnov,et al.  Polyspectra as measures of sound texture and timbre , 1997 .

[4]  E. Hewitt,et al.  Abstract Harmonic Analysis , 1963 .

[5]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[6]  Edwin Hewitt,et al.  Abstract Harmonic Analysis: Volume 1 , 1963 .

[7]  Pablo Pedregal,et al.  A Review of an Optimal Design Problem for a Plate of Variable Thickness , 2007, SIAM J. Control. Optim..

[8]  Qiang Wu,et al.  A New Simulation of Spiral Architecture , 2006, IPCV.

[9]  J. Gauthier,et al.  Hypoelliptic diffusion and human vision: a semi-discrete new twist on the Petitot theory , 2013 .

[10]  Jean-Paul Gauthier,et al.  Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context , 2007, Journal of Mathematical Imaging and Vision.

[11]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[12]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[13]  Phillip Sheridan,et al.  Spiral architecture for machine vision , 1996 .

[14]  Jean-Paul Gauthier,et al.  Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems , 2014, 53rd IEEE Conference on Decision and Control.

[15]  Tom Hintz,et al.  Pseudo-invariant image transformations on a hexagonal lattice , 2000, Image Vis. Comput..

[16]  Jean-Paul Gauthier,et al.  Anthropomorphic Image Reconstruction via Hypoelliptic Diffusion , 2010, SIAM J. Control. Optim..

[17]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .

[18]  Jean-Paul Gauthier,et al.  Hypoelliptic Diffusion and Human Vision: A Semidiscrete New Twist , 2014, SIAM J. Imaging Sci..

[19]  Scott D. Pauls,et al.  Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model , 2009, Journal of Mathematical Imaging and Vision.