Applications of Polynomial Chaos-Based Cokriging to Aerodynamic Design Optimization Benchmark Problems

[1]  Yu Zhang,et al.  Multi-round Surrogate-based Optimization for Benchmark Aerodynamic Design Problems , 2016 .

[2]  Joel Nothman,et al.  Author Correction: SciPy 1.0: fundamental algorithms for scientific computing in Python , 2020, Nature Methods.

[3]  Slawomir Koziel,et al.  Automated Low-Fidelity Model Setup for Surrogate-Based Aerodynamic Optimization , 2014 .

[4]  Daniel J Poole,et al.  Control Point-Based Aerodynamic Shape Optimization Applied to AIAA ADODG Test Cases , 2015 .

[5]  J. Wiart,et al.  Polynomial-Chaos-based Kriging , 2015, 1502.03939.

[6]  C. Audet,et al.  Direct Search Airfoil Optimization Using Far-Field Drag Decomposition Results , 2015 .

[7]  Hossein Zare-Behtash,et al.  State-of-the-art in aerodynamic shape optimisation methods , 2018, Appl. Soft Comput..

[8]  Sivakumaran Nadarajah,et al.  Adjoint-Based Aerodynamic Optimization Framework , 2014 .

[9]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[10]  Leifur Þ. Leifsson,et al.  Multifidelity model-assisted probability of detection via Cokriging , 2019 .

[11]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[12]  C. Mader,et al.  Derivatives for Time-Spectral Computational Fluid Dynamics Using an Automatic Differentiation Adjoint , 2012 .

[13]  Xiangyang Wang,et al.  Aerodynamic shape optimization using a novel optimizer based on machine learning techniques , 2019, Aerospace Science and Technology.

[14]  Slawomir Koziel,et al.  Trawl-Door Shape Optimization by Space-Mapping- Corrected CFD Models and Kriging Surrogates , 2016, ICCS.

[15]  Joaquim R. R. A. Martins,et al.  RANS-Based Aerodynamic Shape Optimization of a Strut-Braced Wing with Overset Meshes , 2018, Journal of Aircraft.

[16]  Hugo Gagnon,et al.  Aerodynamic Shape Optimization of Benchmark Problems Using Jetstream , 2015 .

[17]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[18]  Michael D. Shields,et al.  The generalization of Latin hypercube sampling , 2015, Reliab. Eng. Syst. Saf..

[19]  Joaquim R. R. A. Martins,et al.  Robust aerodynamic shape optimization—From a circle to an airfoil , 2019, Aerospace Science and Technology.

[20]  Slawomir Koziel,et al.  Efficient Multi-Objective Aerodynamic Optimization by Design Space Dimension Reduction and Co-Kriging , 2016 .

[21]  Benjamin Peherstorfer,et al.  Survey of multifidelity methods in uncertainty propagation, inference, and optimization , 2018, SIAM Rev..

[22]  Raphael T. Haftka,et al.  Surrogate-based Analysis and Optimization , 2005 .

[23]  Gang Sun,et al.  Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization , 2019, Aerospace Science and Technology.

[24]  Jacques Peter,et al.  Gradient-Based Aerodynamic Optimization with the elsA Software , 2014 .

[25]  Joaquim R. R. A. Martins,et al.  On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization , 2018 .

[26]  Slawomir Koziel,et al.  Variable-fidelity CFD models and co-Kriging for expedited multi-objective aerodynamic design optimization , 2016 .

[27]  Michael J. Aftosmis,et al.  Aerodynamic Shape Optimization Benchmarks with Error Control and Automatic Parameterization , 2015 .

[28]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .