Persistence Homology for Link Prediction: An Interactive View

Link prediction is an important learning task for graph-structured data. In this paper, we propose a novel topological approach to characterize interactions between two nodes. Our topological feature, based on the extended persistence homology, encodes rich structural information regarding the multi-hop paths connecting nodes. Based on this feature, we propose a graph neural network method that outperforms state-of-the-arts on different benchmarks. As another contribution, we propose a novel algorithm to more efficiently compute the extended persistent diagrams for graphs. This algorithm can be generally applied to accelerate many other topological methods for graph learning tasks.

[1]  Wenwu Zhu,et al.  Deep Learning on Graphs: A Survey , 2018, IEEE Transactions on Knowledge and Data Engineering.

[2]  Steve Oudot,et al.  Sliced Wasserstein Kernel for Persistence Diagrams , 2017, ICML.

[3]  William L. Hamilton,et al.  Inductive Relation Prediction by Subgraph Reasoning , 2020, ICML.

[4]  Yehuda Koren,et al.  Matrix Factorization Techniques for Recommender Systems , 2009, Computer.

[5]  Mathieu Carrière,et al.  PersLay: A Neural Network Layer for Persistence Diagrams and New Graph Topological Signatures , 2020, AISTATS.

[6]  Manohar Kaul,et al.  Understanding and Predicting Links in Graphs: A Persistent Homology Perspective , 2018, ArXiv.

[7]  Douwe Kiela,et al.  Poincaré Embeddings for Learning Hierarchical Representations , 2017, NIPS.

[8]  Jie Gao,et al.  Network Alignment by Discrete Ollivier-Ricci Flow , 2018, GD.

[9]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[10]  Primoz Skraba,et al.  Zigzag persistent homology in matrix multiplication time , 2011, SoCG '11.

[11]  Stephan Günnemann,et al.  Pitfalls of Graph Neural Network Evaluation , 2018, ArXiv.

[12]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[13]  Philip S. Yu,et al.  A Comprehensive Survey on Graph Neural Networks , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[14]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[15]  Max Welling,et al.  Modeling Relational Data with Graph Convolutional Networks , 2017, ESWC.

[16]  Lise Getoor,et al.  Collective Classification in Network Data , 2008, AI Mag..

[17]  Kenji Fukumizu,et al.  Persistence weighted Gaussian kernel for topological data analysis , 2016, ICML.

[18]  Marc Niethammer,et al.  Graph Filtration Learning , 2019, ICML.

[19]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[20]  Dimitris Samaras,et al.  Topology-Preserving Deep Image Segmentation , 2019, NeurIPS.

[21]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[22]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[23]  Yixin Chen,et al.  Link Prediction Based on Graph Neural Networks , 2018, NeurIPS.

[24]  Chao Chen,et al.  Persistence Enhanced Graph Neural Network , 2020, AISTATS.

[25]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Linyuan Lü,et al.  Predicting missing links via local information , 2009, 0901.0553.

[27]  Josh Alman,et al.  A Refined Laser Method and Faster Matrix Multiplication , 2020, SODA.

[28]  Jure Leskovec,et al.  Hyperbolic Graph Convolutional Neural Networks , 2019, NeurIPS.

[29]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[30]  S. Coulomb,et al.  Gene essentiality and the topology of protein interaction networks , 2005, Proceedings of the Royal Society B: Biological Sciences.

[31]  Mingzhe Wang,et al.  LINE: Large-scale Information Network Embedding , 2015, WWW.

[32]  Marc Niethammer,et al.  Connectivity-Optimized Representation Learning via Persistent Homology , 2019, ICML.

[33]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[34]  Amin Vahdat,et al.  Hyperbolic Geometry of Complex Networks , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Steven Skiena,et al.  DeepWalk: online learning of social representations , 2014, KDD.

[36]  Chuan Zhou,et al.  Graph Geometry Interaction Learning , 2020, NeurIPS.

[37]  Andreas Uhl,et al.  Deep Learning with Topological Signatures , 2017, NIPS.

[38]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[39]  Linyuan Lu,et al.  Link Prediction in Complex Networks: A Survey , 2010, ArXiv.

[40]  Qi Zhao,et al.  Learning metrics for persistence-based summaries and applications for graph classification , 2019, NeurIPS.

[41]  Chao Chen,et al.  A Topological Regularizer for Classifiers via Persistent Homology , 2019, AISTATS.

[42]  David Cohen-Steiner,et al.  Extending Persistence Using Poincaré and Lefschetz Duality , 2009, Found. Comput. Math..

[43]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[44]  Jian Li,et al.  Network Embedding as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec , 2017, WSDM.

[45]  Lada A. Adamic,et al.  Friends and neighbors on the Web , 2003, Soc. Networks.