Development of Materials for Third Generation Optical Storage Media

In 1987, the breakthrough discovery of the GeTe-Sb2Te3 pseudo-binary alloys removed the difficulties that had inhibited phase-change materials from being used in practical applications. The keys issues that had to be solved were related to i) the material composition and ii) the conceptual change in designing materials for phase-change devices. The prominent features of GeTe-Sb2Te3 pseudo-binary alloys enabled a very fast crystallization process and high cyclability at once, and the conceptual change from “how to crystallize the essentially amorphous material” to “how to amorphize the essentially crystalline material” enabled the application of single phase materials with high crystallization speed and high melting temperature, T m. In this chapter, it will be mainly described how such phase-change alloys were obtained (history), how the compositions are superior (results), and what are the essential points of them (secrets) especially in the optical uses.

[1]  Takashi Ohno,et al.  High-speed rewritable DVD up to 20 m/s with nucleation-free eutectic phase-change material of Ge(Sb70Te30)+Sb , 2000, Optical Data Storage.

[2]  Noboru Yamada,et al.  A Study of Highly Symmetrical Crystal Structures, Commonly Seen in High-Speed Phase-Change Materials, Using Synchrotron Radiation , 2002 .

[3]  Gaspard,et al.  Structure and bonding in liquid tellurium. , 1996, Physical review. B, Condensed matter.

[4]  Laser diode beam exposure instrument for rapid quenching of thin‐film materials , 1992 .

[5]  D. A. Baker,et al.  Application of bond constraint theory to the switchable optical memory material Ge2Sb2Te5. , 2006, Physical review letters.

[6]  Noboru Yamada,et al.  Nitrogen Doping Effect on Phase Change Optical Disks , 1998 .

[7]  Noboru Yamada,et al.  Te-Ge-Sn-Au Phase Change Recording Film For Optical Disk , 1987, Optics & Photonics.

[8]  Noboru Yamada,et al.  Erasable Phase-Change Optical Materials , 1996 .

[9]  Noboru Yamada,et al.  Phase-Change Optical Disk Having a Nitride Interface Layer , 1998 .

[10]  Yoshiyuki Kageyama,et al.  Completely Erasable Phase Change Optical Disk , 1992 .

[11]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[12]  Stanford R. Ovshinsky,et al.  Rapid Reversible Light-Induced Crystallization of Amorphous Semiconductors , 1971 .

[13]  Sumio Sakka,et al.  High pressure effects on glass , 1969 .

[14]  N. Yamada,et al.  Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. , 2004, Acta crystallographica. Section B, Structural science.

[15]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[16]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[17]  N. Yamada,et al.  Large displacement of germanium atoms in crystalline Ge2Sb2Te5 , 2005 .

[18]  N. Yamada,et al.  Effect of Dielectric Material Films on Crystallization Characteristics of Ge2Sb2Te5 Phase-Change Memory Film , 2007 .

[19]  H. Inoue,et al.  The Phase Change Optical Disc with the Data Recording Rate of 140 Mbps , 2002, Optical Data Storage.

[20]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[21]  Yuji Mori,et al.  Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase , 2000 .

[22]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[23]  Kenji Narumi,et al.  Phase-change material for use in rewritable dual-layer optical disk , 2002, Optical Data Storage.

[24]  Takeo Ohta,et al.  Phase Change Disk Media Having Rapid Cooling Structure , 1989 .

[25]  Kenichi Nishiuchi,et al.  High Speed Overwritable Phase Change Optical Disk Material , 1987 .

[26]  Noboru Yamada,et al.  Structural study of a Ag 3.4 In 3.7 Sb 76.4 Te 16.5 quadruple compound utilized for phase-change optical disks , 2001 .

[27]  Noboru Yamada,et al.  TeGeSnAu Alloys for Phase Change Type Optical Disk Memories , 1989 .

[28]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[29]  N. Yamada,et al.  Extremely long period-stacking structure in the Sb-Te binary system. , 2005, Acta crystallographica. Section B, Structural science.

[30]  H. Iwasaki,et al.  Completely Erasable Phase Change Optical Disc II: Application of Ag-In-Sb-Te Mixed-Phase System for Rewritable Compact Disc Compatible with CD-Velocity and Double CD-Velocity , 1993 .

[31]  F. Catalina,et al.  Ultrafast reversible phase change in GeSb films for erasable optical storage , 1992 .

[32]  F. Yonezawa,et al.  Molecular dynamics study on freezing of Lennard-Jones argon in an open-ended cylindrical pore , 2004 .

[33]  Noboru Yamada,et al.  Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory , 2000 .

[34]  L. E. Shelimova,et al.  Composition and Properties of Layered Compounds in the GeTe–Sb2Te3System , 2001 .

[35]  N. Yamada,et al.  Acceleration of Crystallization Speed by Sn Addition to Ge–Sb–Te Phase-Change Recording Material , 2001 .

[36]  W. Clegg Crystal Structure Analysis: Principles and Practice , 2002 .

[37]  M. Hansen,et al.  Constitution of Binary Alloys , 1958 .