Effects of cirrus heterogeneity on lidar CALIOP/CALIPSO data

Abstract The goal of this work is to evaluate the effects of cirrus heterogeneity on characteristics that are directly measured by the CALIOP/CALIPSO lidar, i.e. attenuated backscatter coefficient and depolarization ratio. This assessment was done using the 3D Monte Carlo simulator of Polarized Lidar signals (3DMcPOLID) together with the high-resolution 3D cloud fields-generator 3DCLOUD_V2. The evaluation is based on random sampling and on comparison between mean profiles of 3D clouds and of plane-parallel equivalent 1D clouds. Mean profiles of the apparent attenuated backscatter as well as of the integrated apparent backscatter are statistically equal when a cirrus cloud field is probed with the 325 m resolution. To the contrary, the difference between profiles is statistically significant in the case of the 1 km resolution. Profiles of the volume depolarization ratio are statistically different for both cases of the horizontal resolution. The total bias of CALIOP/CALIPSO lidar data is mainly due to the plane parallel bias and multiple scattering, i.e., horizontal photon transport.

[1]  K. Liou,et al.  Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. , 1996, Applied optics.

[2]  Robin J. Hogan,et al.  Fast Lidar and Radar Multiple-Scattering Models. Part I: Small-Angle Scattering Using the Photon Variance–Covariance Method , 2008 .

[3]  Bernhard Mayer,et al.  Efficient unbiased variance reduction techniques for Monte Carlo simulations of radiative transfer in cloudy atmospheres: The solution , 2011 .

[4]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[5]  C. Platt,et al.  Lidar and Radiometric Observations of Cirrus Clouds , 1973 .

[6]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[7]  Anthony B. Davis,et al.  Thermal radiative fluxes through inhomogeneous cloud fields: a sensitivity study using a new stochastic cloud generator , 2004 .

[8]  Philippe Dubuisson,et al.  Impact of cirrus clouds heterogeneities on top-of-atmosphere thermal infrared radiation , 2014 .

[9]  Philippe Dubuisson,et al.  A flexible three-dimensional stratocumulus, cumulus and cirrus cloud generator (3DCLOUD) based on drastically simplified atmospheric equations and the Fourier transform framework , 2014 .

[10]  Clemens Simmer,et al.  Evaluation of Radar Multiple-Scattering Effects from a GPM Perspective. Part I: Model Description and Validation , 2006 .

[11]  David J. Sheskin,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 1997 .

[12]  Anthony B. Davis,et al.  Horizontal structure of marine boundary layer clouds from centimeter to kilometer scales , 1999 .

[13]  Laurent C. Labonnote,et al.  A 3D polarized Monte Carlo lidar system simulator for studying effects of cirrus inhomogeneities on CALIOP/CALIPSO measurements , 2013 .

[14]  Céline Cornet,et al.  Three-dimensional polarized Monte Carlo atmospheric radiative transfer model (3DMCPOL): 3D effects on polarized visible reflectances of a cirrus cloud , 2010 .

[15]  M. Lebsock,et al.  Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans , 2015, Journal of geophysical research. Atmospheres : JGR.

[16]  Kenneth Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .

[17]  D. Winker,et al.  CALIPSO Lidar Description and Performance Assessment , 2009 .

[18]  Robert F. Cahalan,et al.  The albedo of fractal stratocumulus clouds , 1994 .

[19]  K. Browning,et al.  The structure of an inversion above a convective boundary layer as observed using high-power pulsed doppler radar , 1973 .

[20]  R. Hogan,et al.  Parametrizing the horizontal inhomogeneity of ice water content using CloudSat data products , 2012 .

[21]  Ziad S. Haddad,et al.  Effects of Nonuniform Beam Filling on Rainfall Retrieval for the TRMM Precipitation Radar , 1998 .

[22]  David M. Winker,et al.  Monte-Carlo calculations of cloud returns for ground-based and space-based LIDARS , 1995 .

[23]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[24]  A. Minikin,et al.  Light scattering by single ice crystals of cirrus clouds , 2006 .

[25]  Anthony B. Davis,et al.  Radiative smoothing in fractal clouds , 1995 .

[26]  Qiang Fu,et al.  High-Cloud Horizontal Inhomogeneity and Solar Albedo Bias , 2002 .

[27]  Alessandro Battaglia,et al.  Fast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream Approximation , 2008 .

[28]  Y. Benayahu,et al.  LIDAR multiple scattering from clouds , 1995 .

[29]  Gerald G. Mace,et al.  Effect of improving representation of horizontal and vertical cloud structure on the Earth's global radiation budget. Part I: Review and parametrization , 2010 .

[30]  D. P. Donovan,et al.  A depolarisation lidar-based method for the determination of liquid-cloud microphysical properties , 2014 .

[31]  U. Schumann,et al.  Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment , 2004 .

[32]  A. Davis,et al.  Approximation Methods in Atmospheric 3D Radiative Transfer Part 1: Resolved Variability and Phenomenology , 2005 .

[33]  D. Deirmendjian Electromagnetic scattering on spherical polydispersions , 1969 .

[34]  L. I. Chaikovskaya,et al.  Remote sensing of clouds using linearly and circularly polarized laser beams: techniques to compute signal polarization , 2008 .

[35]  G. L. Stephens,et al.  Multiple scattering effects in the lidar pulse stretching problem , 1999 .

[36]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[37]  R. Charlson,et al.  Simulating Global Clouds: Past, Present, and Future , 2009 .

[38]  Luc R. Bissonnette,et al.  Lidar and Multiple Scattering , 2005 .

[39]  H. Chepfer,et al.  Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: Application to spaceborne and airborne backscatter lidar measurements during LITE Mission and E LITE Campaign , 1999 .

[40]  L R Bissonnette,et al.  Lidar effective multiple-scattering coefficients in cirrus clouds. , 1997, Applied optics.

[41]  D. Atlas,et al.  MULTI-WAVELENGTH RADAR REFLECTIVITY OF HAILSTORMS , 1961 .

[42]  G. Mace,et al.  Cirrus horizontal inhomogeneity and OLR bias , 2000 .

[43]  R. Davies,et al.  3D Radiative Transfer in Satellite Remote Sensing of Cloud Properties , 2005 .

[44]  J. Pelon,et al.  Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans , 2015 .

[45]  Anthony B. Davis,et al.  Scale Invariance of Liquid Water Distributions in Marine Stratocumulus. Part I: Spectral Properties and Stationarity Issues , 1996 .

[46]  M. Rao Probability theory with applications , 1984 .

[47]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[48]  Sarah F. Kew,et al.  A 3D stochastic cloud model for investigating the radiative properties of inhomogeneous cirrus clouds , 2005 .

[49]  David M. Winker,et al.  Accounting for multiple scattering in retrievals from space lidar , 2003, International Workshop on Lidar Multiple Scattering Experiments.

[50]  A. Marshak,et al.  Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts , 2010 .

[51]  A. Marshak,et al.  Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions , 2004 .

[52]  Robert F. Cahalan,et al.  The Landsat Scale Break in Stratocumulus as a Three-Dimensional Radiative Transfer Effect: Implications for Cloud Remote Sensing , 1997 .