Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission.

The ESCRT-I and ESCRT-II supercomplex induces membrane buds that invaginate into the lumen of endosomes, a process central to the lysosomal degradation of ubiquitinated membrane proteins. The solution conformation of the membrane-budding ESCRT-I-II supercomplex from yeast was refined against small-angle X-ray scattering (SAXS), single-molecule Förster resonance energy transfer (smFRET), and double electron-electron resonance (DEER) spectra. These refinements yielded an ensemble of 18 ESCRT-I-II supercomplex structures that range from compact to highly extended. The crescent shapes of the ESCRT-I-II supercomplex structures provide the basis for a detailed mechanistic model, in which ESCRT-I-II stabilizes membrane buds and coordinates cargo sorting by lining the pore of the nascent bud necks. The hybrid refinement used here is general and should be applicable to other dynamic multiprotein assmeblies.

[1]  J. Hurley,et al.  Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. , 2009, Developmental cell.

[2]  H. Stenmark,et al.  Hrs recruits clathrin to early endosomes , 2001, The EMBO journal.

[3]  J. Hurley,et al.  Molecular Mechanism of Multivesicular Body Biogenesis by ESCRT Complexes , 2010, Nature.

[4]  H. Stenmark,et al.  Eap45 in Mammalian ESCRT-II Binds Ubiquitin via a Phosphoinositide-interacting GLUE Domain*♦ , 2005, Journal of Biological Chemistry.

[5]  M. Niepel,et al.  The nuclear pore complex: bridging nuclear transport and gene regulation , 2010, Nature Reviews Molecular Cell Biology.

[6]  Dong Yang,et al.  Structural role of the Vps4-Vta1 interface in ESCRT-III recycling. , 2010, Structure.

[7]  Irina V Gopich Concentration effects in "single-molecule" spectroscopy. , 2008, The journal of physical chemistry. B.

[8]  C. Richter,et al.  Dual mechanisms specify Doa4‐mediated deubiquitination at multivesicular bodies , 2007, The EMBO journal.

[9]  S. Emr,et al.  ESCRT-I Core and ESCRT-II GLUE Domain Structures Reveal Role for GLUE in Linking to ESCRT-I and Membranes , 2006, Cell.

[10]  Stanley N Cohen,et al.  TSG101 interaction with HRS mediates endosomal trafficking and receptor down-regulation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. D. Fisher,et al.  HIV Gag mimics the Tsg101-recruiting activity of the human Hrs protein , 2003, The Journal of cell biology.

[12]  W. B. Snyder,et al.  Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. , 2002, Developmental cell.

[13]  Natalie Elia,et al.  Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission , 2011, Proceedings of the National Academy of Sciences.

[14]  J. Hurley,et al.  Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. , 2008, Developmental cell.

[15]  Jennifer Lippincott-Schwartz,et al.  Membrane scission by the ESCRT-III complex , 2009, Nature.

[16]  S. Emr,et al.  ESCRT‐II coordinates the assembly of ESCRT‐III filaments for cargo sorting and multivesicular body vesicle formation , 2010, The EMBO journal.

[17]  Gerhard Hummer,et al.  Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[18]  Bensimon,et al.  Fluctuating vesicles of nonspherical topology. , 1994, Physical review letters.

[19]  Gunnar Jeschke,et al.  Rotamer libraries of spin labelled cysteines for protein studies. , 2011, Physical chemistry chemical physics : PCCP.

[20]  Harald Stenmark,et al.  The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins , 2009, Nature.

[21]  J. Hurley,et al.  Structural and Functional Organization of the ESCRT-I Trafficking Complex , 2006, Cell.

[22]  Matthew West,et al.  Bro1 binding to Snf7 regulates ESCRT-III membrane scission activity in yeast , 2011, The Journal of cell biology.

[23]  William A Eaton,et al.  Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories , 2009, Proceedings of the National Academy of Sciences.

[24]  B. González,et al.  ESCRT-II, an endosome-associated complex required for protein sorting: crystal structure and interactions with ESCRT-III and membranes. , 2004, Developmental cell.

[25]  C. Bräuchle,et al.  Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component , 2011, Nature Cell Biology.

[26]  Scott D. Emr,et al.  Structure of the ESCRT-II endosomal trafficking complex , 2004, Nature.

[27]  J. Hurley,et al.  Membrane budding and scission by the ESCRT machinery: it's all in the neck , 2010, Nature Reviews Molecular Cell Biology.

[28]  A. Szabó,et al.  Single-molecule FRET with diffusion and conformational dynamics. , 2007, The journal of physical chemistry. B.

[29]  B. Peter,et al.  BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure , 2004, Science.

[30]  Pekka Lappalainen,et al.  Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain–like mechanism , 2007, The Journal of cell biology.

[31]  S. Emr,et al.  Structural insight into the ESCRT‐I/‐II link and its role in MVB trafficking , 2007, The EMBO journal.

[32]  G. Jeschke,et al.  Dead-time free measurement of dipole-dipole interactions between electron spins. , 2000, Journal of magnetic resonance.

[33]  Jacob Piehler,et al.  Helical Structures of ESCRT-III Are Disassembled by VPS4 , 2008, Science.

[34]  P. Hanson,et al.  Plasma membrane deformation by circular arrays of ESCRT-III protein filaments , 2008, The Journal of cell biology.

[35]  Roger L. Williams,et al.  Structural Insights into Endosomal Sorting Complex Required for Transport (ESCRT-I) Recognition of Ubiquitinated Proteins* , 2004, Journal of Biological Chemistry.

[36]  J. Martin-Serrano,et al.  Parallels Between Cytokinesis and Retroviral Budding: A Role for the ESCRT Machinery , 2007, Science.

[37]  W. Sundquist,et al.  Retrovirus budding. , 2004, Annual review of cell and developmental biology.

[38]  J. McCullough,et al.  AMSH is an endosome-associated ubiquitin isopeptidase , 2004, The Journal of cell biology.

[39]  James D. Riches,et al.  Computational Model of Membrane Fission Catalyzed by ESCRT-III , 2009, PLoS Comput. Biol..

[40]  H. Zimmermann,et al.  DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data , 2006 .

[41]  Scott D Emr,et al.  Ubiquitin interactions of NZF zinc fingers , 2004, The EMBO journal.

[42]  Markus Babst,et al.  Escrt-III: an endosome-associated heterooligomeric protein complex required for mvb sorting. , 2002, Developmental cell.

[43]  Song Tan,et al.  A modular polycistronic expression system for overexpressing protein complexes in Escherichia coli. , 2001, Protein expression and purification.

[44]  W. Eaton,et al.  Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations , 2007, Proceedings of the National Academy of Sciences.

[45]  J. Hurley,et al.  Molecular Architecture and Functional Model of the Complete Yeast ESCRT-I Heterotetramer , 2007, Cell.

[46]  G. Hummer,et al.  SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. , 2011, Structure.

[47]  S. Emr,et al.  Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I , 2001, Cell.

[48]  J. Hurley,et al.  Structural basis for endosomal recruitment of ESCRT‐I by ESCRT‐0 in yeast , 2011, The EMBO journal.

[49]  Roger L. Williams,et al.  The emerging shape of the ESCRT machinery , 2007, Nature Reviews Molecular Cell Biology.

[50]  Yoko Shibata,et al.  Mechanisms shaping the membranes of cellular organelles. , 2009, Annual review of cell and developmental biology.

[51]  A. Brech,et al.  Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes , 2003, The Journal of cell biology.

[52]  J. Bonifacino,et al.  Crystallographic and functional analysis of the ESCRT-I /HIV-1 Gag PTAP interaction. , 2010, Structure.

[53]  P. Bieniasz,et al.  Dynamics of ESCRT protein recruitment during retroviral assembly , 2011, Nature Cell Biology.

[54]  S. Emr,et al.  Vps27 recruits ESCRT machinery to endosomes during MVB sorting , 2003, The Journal of cell biology.

[55]  A. D. Robertson,et al.  Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome , 2003, The Journal of cell biology.

[56]  J. Klumperman,et al.  Bilayered clathrin coats on endosomal vacuoles are involved in protein sorting toward lysosomes. , 2002, Molecular biology of the cell.