Quantum Field Thermal Machines

Recent years have enjoyed an overwhelming interest in quantum thermodynamics, a field of research aimed at understanding thermodynamic tasks performed in the quantum regime. Further progress, however, seems to be obstructed by the lack of experimental implementations of thermal machines in which quantum effects play a decisive role. In this work, we introduce a blueprint of quantum field machines, which - once experimentally realized - would fill this gap. We provide a detailed proposal how to realize a quantum machine in one-dimensional ultra-cold atomic gases using a set of modular operations giving rise to a piston that can be coupled sequentially to thermal baths with the innovation that a quantum field takes up the role of the working fluid. We study the operational primitives numerically in the Tomonaga-Luttinger liquid framework proposing how to model the compression of the system during strokes of a piston and the coupling to a bath giving rise to a valve controlling phononic heat flow. By composing the numerically modeled operational primitives we design complete quantum thermodynamic cycles that are shown to enable cooling and hence giving rise to a quantum field refrigerator. The active cooling achieved in this way can operate in regimes where existing cooling methods become ineffective. We describe the consequences of operating the machine at the quantum level and give an outlook of how this work serves as a road map to explore open questions in quantum information, quantum thermodynamics and the study of non-Markovian quantum dynamics.

[1]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[2]  李聖昊,et al.  28 , 1910, Tao te Ching.

[3]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[4]  Jakob Reichel,et al.  Atom chips. , 2005, Scientific American.

[5]  Non-stationarity and dissipative time crystals: spectral properties and finite-size effects , 2020, 2005.05062.

[6]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[7]  J. Schmiedmayer,et al.  Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas , 2013, Scientific Reports.

[8]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[9]  J. Eisert,et al.  By-passing fluctuation theorems , 2019, Quantum.

[10]  I. Bloch,et al.  Optimal control of complex atomic quantum systems , 2015, Scientific Reports.

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[13]  Ronnie Kosloff,et al.  Quantum Heat Machines Equivalence, Work Extraction beyond Markovianity, and Strong Coupling via Heat Exchangers , 2016, Entropy.

[14]  Karl Kaiser,et al.  An European , 2004 .

[15]  Renato Renner,et al.  Relative thermalization. , 2014, Physical review. E.

[16]  T. Jacqmin,et al.  Sub-Poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime. , 2011, Physical review letters.

[17]  T. Rudolph,et al.  Entanglement and the thermodynamic arrow of time. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Jens Eisert,et al.  Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems , 2015, Reports on progress in physics. Physical Society.

[19]  F. Dalfovo,et al.  Vortex reconnections and rebounds in trapped atomic Bose-Einstein condensates , 2016, 1611.01691.

[20]  Nicole Yunger Halpern,et al.  The resource theory of informational nonequilibrium in thermodynamics , 2013, 1309.6586.

[21]  I. S. Oliveira,et al.  Reversing the direction of heat flow using quantum correlations , 2017, Nature Communications.

[22]  R. Citro,et al.  One dimensional bosons: From condensed matter systems to ultracold gases , 2011, 1101.5337.

[23]  Long phase coherence time and number squeezing of two Bose-Einstein condensates on an atom chip. , 2006, Physical review letters.

[24]  장윤희,et al.  Y. , 2003, Industrial and Labor Relations Terms.

[25]  Philipp Hauke,et al.  Tomography of band insulators from quench dynamics. , 2014, Physical review letters.

[26]  Marcus Huber,et al.  Unifying paradigms of quantum refrigeration: Fundamental limits of cooling and associated work costs. , 2017, Physical review. E.

[27]  D. Pritchard,et al.  Light Scattering to Determine the Relative Phase of Two Bose-Einstein Condensates , 2005, Science.

[28]  D. Hall,et al.  Real-Time Dynamics of Single Vortex Lines and Vortex Dipoles in a Bose-Einstein Condensate , 2010, Science.

[29]  J. Javanainen Phonon approach to an array of traps containing Bose-Einstein condensates , 1999 .

[30]  Bosonizing one-dimensional cold atomic gases , 2003, cond-mat/0307033.

[31]  C. MacCormick,et al.  Experimental demonstration of painting arbitrary and dynamic potentials for Bose–Einstein condensates , 2009, 0902.2171.

[32]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[33]  J. Schmiedmayer,et al.  Density ripples in expanding low-dimensional gases as a probe of correlations , 2009, 0904.1723.

[34]  Paul Skrzypczyk,et al.  Extracting work from correlations , 2014, 1407.7765.

[35]  S. Coleman Quantum sine-Gordon equation as the massive Thirring model , 1975 .

[36]  G. Takács,et al.  Correlation Functions of the Quantum Sine-Gordon Model in and out of Equilibrium. , 2018, Physical review letters.

[37]  J. Schmiedmayer,et al.  Recurrences in an isolated quantum many-body system , 2017, Science.

[38]  J. Eisert,et al.  Quantum read-out for cold atomic quantum simulators , 2018, Communications Physics.

[39]  A. Aspect,et al.  Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes. , 2005, Physical review letters.

[40]  W. Thirring A soluble relativistic field theory , 1958 .

[41]  J. Schmiedmayer,et al.  Long-Range Order in Electronic Transport Through Disordered Metal Films , 2008, Science.

[42]  Ulrich Hohenester,et al.  Optimizing number squeezing when splitting a mesoscopic condensate , 2008, 0806.3877.

[43]  G. Kurizki,et al.  Thermal baths as quantum resources: more friends than foes? , 2015, 1509.06318.

[44]  M. Zwierlein,et al.  Cascade of Solitonic Excitations in a Superfluid Fermi gas: From Planar Solitons to Vortex Rings and Lines. , 2016, Physical review letters.

[45]  F. Brandão,et al.  Resource theory of quantum states out of thermal equilibrium. , 2011, Physical review letters.

[46]  Marcus Huber,et al.  Concepts of work in autonomous quantum heat engines , 2019, Quantum.

[47]  J. Schmiedmayer,et al.  Probing quantum and thermal noise in an interacting many-body system , 2007, 0710.1575.

[48]  M. Schemmer,et al.  Monitoring squeezed collective modes of a one-dimensional Bose gas after an interaction quench using density-ripple analysis , 2017, Physical Review A.

[49]  T. Jacobson,et al.  A rapidly expanding Bose-Einstein condensate: an expanding universe in the lab. , 2017, Physical review. X.

[50]  U. Schollwock,et al.  Quantum dynamics of a mobile spin impurity , 2012, Nature Physics.

[51]  G. Kurizki,et al.  Quantized refrigerator for an atomic cloud , 2018, Quantum.

[52]  J. Eisert,et al.  Quantum certification and benchmarking , 2019, Nature Reviews Physics.

[53]  Jian-Wei Pan,et al.  Quantum criticality and the Tomonaga-Luttinger liquid in one-dimensional Bose gases. , 2016, Physical review letters.

[54]  Petrov,et al.  Regimes of quantum degeneracy in trapped 1D gases , 2000, Physical review letters.

[55]  I. Mazets,et al.  Relaxation and Prethermalization in an Isolated Quantum System , 2011, Science.

[56]  W. Ketterle,et al.  Direct, Nondestructive Observation of a Bose Condensate , 1996, Science.

[57]  Y. Japha,et al.  COHERENT OUTPUT, STIMULATED QUANTUM EVAPORATION, AND PAIR BREAKING IN A TRAPPED ATOMIC BOSE GAS , 1999 .

[58]  T. Esslinger,et al.  Breakdown of the Wiedemann–Franz law in a unitary Fermi gas , 2018, Proceedings of the National Academy of Sciences.

[59]  V. Korepin,et al.  Quantum theory of solitons , 1978 .

[60]  M. Mézard,et al.  Journal of Statistical Mechanics: Theory and Experiment , 2011 .

[61]  J. Pekola Towards quantum thermodynamics in electronic circuits , 2015, Nature Physics.

[62]  M. Buchhold,et al.  Kinetic theory for interacting Luttinger liquids , 2015, 1501.01027.

[63]  T. Schweigler Correlations and dynamics of tunnel-coupled one-dimensional Bose gases , 2019, 1908.00422.

[64]  Masanao Ozawa,et al.  Soundness and completeness of quantum root-mean-square errors , 2018, npj Quantum Information.

[65]  'Alvaro M. Alhambra,et al.  Fluctuating Work: From Quantum Thermodynamical Identities to a Second Law Equality , 2016, 1601.05799.

[66]  Christopher T. Chubb,et al.  Beyond the thermodynamic limit: finite-size corrections to state interconversion rates , 2017, Quantum.

[67]  M. Wilkens,et al.  Javanainen and Wilkens Reply , 1998 .

[68]  A. Xuereb,et al.  Perspective on quantum thermodynamics , 2015, 1509.01086.

[69]  S Montangero,et al.  Optimal control at the quantum speed limit. , 2009, Physical review letters.

[70]  Iacopo Carusotto,et al.  Spectrum and entanglement of phonons in quantum fluids of light , 2014 .

[71]  K. B. Davis,et al.  An analytical model for evaporative cooling of atoms , 1995 .

[72]  E. Demler,et al.  From the moving piston to the dynamical Casimir effect: Explorations with shaken condensates , 2018, Physical Review A.

[73]  Jae-yoon Choi,et al.  Exploring the many-body localization transition in two dimensions , 2016, Science.

[74]  J. Schmiedmayer,et al.  Candidate: Marine Pigneur Examiner: Prof. Oberthaler Title: Relaxation to a Phase-locked Equilibrium state in a One-dimensional Bosonic Josephson Junction , 2019 .

[75]  Matthew Rispoli,et al.  Ultra-precise holographic beam shaping for microscopic quantum control. , 2016, Optics express.

[76]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[77]  Lewenstein,et al.  Quantum Phase Diffusion of a Bose-Einstein Condensate. , 1996, Physical review letters.

[78]  J. Schmiedmayer,et al.  Local emergence of thermal correlations in an isolated quantum many-body system , 2013, Nature Physics.

[79]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[80]  L. Salasnich,et al.  Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates , 2002 .

[81]  J. Dalibard,et al.  Relaxation Dynamics in the Merging of N Independent Condensates. , 2017, Physical review letters.

[82]  M. Partovi,et al.  Entanglement versus Stosszahlansatz: disappearance of the thermodynamic arrow in a high-correlation environment. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[83]  C.-Y. Hsieh,et al.  Gaussian Thermal Operations and The Limits of Algorithmic Cooling. , 2020, Physical review letters.

[84]  V. Vuletić,et al.  Atom Chips: REICHEL:ATOM CHIPS O-BK , 2011 .

[85]  C. Jarzynski Nonequilibrium Equality for Free Energy Differences , 1996, cond-mat/9610209.

[86]  Adolfo del Campo,et al.  Quantum supremacy of many-particle thermal machines , 2015, 1510.04633.

[87]  J. Schmiedmayer,et al.  The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise , 2011, 1104.5631.

[88]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[89]  N. Lundblad,et al.  Repeated measurements with minimally destructive partial-transfer absorption imaging. , 2019, Optics express.

[90]  J. Schmiedmayer,et al.  Microscopic atom optics: from wires to an atom chip , 2008, 0805.2613.

[91]  J. Schmiedmayer,et al.  Cooling of a One-Dimensional Bose Gas. , 2015, Physical review letters.

[92]  Y. Kagan,et al.  Anomalous tunneling of phonon excitations between two Bose-Einstein condensates. , 2003, Physical review letters.

[93]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[94]  J. Eisert,et al.  Observation of non-Markovian micromechanical Brownian motion , 2013, Nature Communications.

[95]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[96]  F. Nori,et al.  Analog of a Quantum Heat Engine Using a Single-Spin Qubit. , 2020, Physical review letters.

[97]  T. Schumm,et al.  Matter-wave interferometry in a double well on an atom chip , 2005 .

[98]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[99]  M. Oberthaler,et al.  Squeezing and entanglement in a Bose–Einstein condensate , 2008, Nature.

[100]  J. Eisert,et al.  Thermodynamic work from operational principles , 2015, 1504.05056.

[101]  P.Zoller,et al.  Dynamic splitting of a Bose-Einstein Condensate , 2000, cond-mat/0005302.

[102]  Peter Hänggi,et al.  Single-atom energy-conversion device with a quantum load , 2018, 1812.01303.

[103]  E. Lutz,et al.  A quantum heat engine driven by atomic collisions , 2021, Nature Communications.

[104]  Paul Skrzypczyk,et al.  Entanglement enhances cooling in microscopic quantum refrigerators. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[105]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[106]  J. Schmiedmayer One-dimensional atomic superfluids as a model system for quantum thermodynamics , 2018, 1805.11539.

[107]  Maier,et al.  Controlling cold atoms using nanofabricated surfaces: atom chips , 1999, Physical review letters.

[108]  Christiane P Koch,et al.  Controlling open quantum systems: tools, achievements, and limitations , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[109]  Viktor Nikolayevich Popov Functional Integrals in Quantum Field Theory and Statistical Physics , 1983 .

[110]  Logan W. Clark,et al.  Roton-maxon excitation spectrum of Bose condensates in a shaken optical lattice. , 2014, Physical review letters.

[111]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2010, Nature.

[112]  Andreas J. Winter,et al.  Entanglement and separability of quantum harmonic oscillator systems at finite temperature , 2007, Quantum Inf. Comput..

[113]  Jonathan Oppenheim,et al.  N ov 2 01 1 Fundamental limitations for quantum and nano thermodynamics , 2011 .

[114]  J. Schmiedmayer,et al.  Designing arbitrary one-dimensional potentials on an atom chip. , 2019, Optics express.

[115]  Jörg Schmiedmayer,et al.  Bose–Einstein condensates: Microscopic magnetic-field imaging , 2005, Nature.

[116]  Thierry Giamarchi,et al.  Quantum physics in one dimension , 2004 .

[117]  Stephanie Wehner,et al.  Surpassing the Carnot efficiency by extracting imperfect work , 2016, 1606.05532.

[118]  E. Mucciolo,et al.  Microscopic model of a phononic refrigerator , 2012, 1203.2561.

[119]  Marcus Huber,et al.  Unifying Paradigms of Quantum Refrigeration: A Universal and Attainable Bound on Cooling. , 2019, Physical review letters.

[120]  I. Carusotto,et al.  Density correlations and analog dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose-Einstein condensates , 2009, 0907.2314.

[121]  M. Horodecki,et al.  Fundamental limitations for quantum and nanoscale thermodynamics , 2011, Nature Communications.

[122]  M. Wilkens,et al.  Phase and Phase Diffusion of a Split Bose-Einstein Condensate , 1997 .

[123]  A. F. Andreev The hydrodynamics of two- and one-dimensional liquids , 1980 .

[124]  Ian A. Walmsley,et al.  Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines. , 2017, Physical review letters.

[125]  J. Schmiedmayer,et al.  Integrated Mach–Zehnder interferometer for Bose–Einstein condensates , 2013, Nature Communications.

[126]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[127]  E. Demler,et al.  Scaling approach to quantum non-equilibrium dynamics of many-body systems , 2009, 0912.2744.

[128]  Jonathan Oppenheim,et al.  A general derivation and quantification of the third law of thermodynamics , 2014, Nature Communications.

[129]  Igor E. Mazets,et al.  Experimental observation of a generalized Gibbs ensemble , 2014, Science.

[130]  M. Paternostro,et al.  Implications of non-Markovian quantum dynamics for the Landauer bound , 2016, 1608.03497.

[131]  T. Roscilde,et al.  Momentum-Space Correlations of a One-Dimensional Bose Gas. , 2015, Physical review letters.

[132]  Alán Aspuru-Guzik,et al.  Single-Atom Heat Machines Enabled by Energy Quantization. , 2017, Physical Review Letters.

[133]  Ronnie Kosloff,et al.  Quantum Thermodynamics: A Dynamical Viewpoint , 2013, Entropy.

[134]  Lidia del Rio,et al.  Resource theories of knowledge , 2015, 1511.08818.

[135]  J. Schmiedmayer,et al.  On solving quantum many-body problems by experiment , 2015, 1505.03126.

[136]  Gerardo Adesso,et al.  Testing the Validity of the 'Local' and 'Global' GKLS Master Equations on an Exactly Solvable Model , 2017, Open Syst. Inf. Dyn..

[137]  A. Leggett,et al.  Comment on “phase and phase diffusion of a split Bose-Einstein condensate” , 1998, cond-mat/9807056.

[138]  J. Eisert,et al.  Equilibration towards generalized Gibbs ensembles in non-interacting theories , 2018, SciPost Physics.

[140]  Zach DeVito,et al.  Opt , 2017 .

[141]  R. Bistritzer,et al.  Intrinsic dephasing in one-dimensional ultracold atom interferometers , 2006, Proceedings of the National Academy of Sciences.

[142]  G'eraldine Haack,et al.  Markovian master equations for quantum thermal machines: local versus global approach , 2017, 1707.09211.

[143]  M. Gu,et al.  Thermodynamic resources in continuous-variable quantum systems , 2019, 1909.07364.

[144]  David Jennings,et al.  Maximally and minimally correlated states attainable within a closed evolving system. , 2012, Physical review letters.

[145]  S. Mandelstam,et al.  Soliton Operators for the Quantized Sine-Gordon Equation , 1975 .

[146]  J. Schmiedmayer,et al.  Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas , 2013, 1312.7568.

[147]  Antoine Georges,et al.  A Thermoelectric Heat Engine with Ultracold Atoms , 2013, Science.

[148]  Mark Edwards,et al.  Resonant wavepackets and shock waves in an atomtronic SQUID , 2015, 1510.02968.

[149]  J. Rottmann,et al.  Single-particle-sensitive imaging of freely propagating ultracold atoms , 2009, 0907.0674.

[150]  Stephanie Wehner,et al.  The maximum efficiency of nano heat engines depends on more than temperature , 2015, Quantum.

[151]  David E. Pritchard,et al.  Optics and Interferometry with Atoms and Molecules , 2009 .

[152]  J. Eisert,et al.  Decay and recurrence of non-Gaussian correlations in a quantum many-body system , 2020, Nature Physics.

[153]  Henrik Wilming,et al.  Third Law of Thermodynamics as a Single Inequality , 2017, 1701.07478.

[154]  J. Anders Thermal state entanglement in harmonic lattices , 2008, 0803.1102.

[155]  T. Jacqmin,et al.  Probing three-body correlations in a quantum gas using the measurement of the third moment of density fluctuations. , 2010, Physical review letters.

[156]  J. Schmiedmayer,et al.  Breakdown of integrability in a quasi-1D ultracold bosonic gas. , 2008, Physical review letters.

[157]  J. Schmiedmayer,et al.  Projective phase measurements in one-dimensional Bose gases , 2018, SciPost Physics.

[158]  David T. Limmer,et al.  Fundamental limitations on photoisomerization from thermodynamic resource theories , 2018, Physical Review A.

[159]  E. Demler,et al.  Linear response theory for a pair of coupled one-dimensional condensates of interacting atoms , 2007, cond-mat/0701421.

[160]  J. Schmiedmayer,et al.  Analytical pendulum model for a bosonic Josephson junction , 2018, Physical Review A.

[161]  G. Watanabe,et al.  An interaction-driven many-particle quantum heat engine and its universal behavior , 2018, npj Quantum Information.

[162]  J. Werschnik,et al.  Quantum optimal control theory , 2007, 0707.1883.

[163]  John Goold,et al.  Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. , 2018, Physical review letters.