Precise Three-Dimensional Scan-Free Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions

We employ a novel framework for information-optimal microscopy to design a family of point spread functions (PSFs), the Tetrapod PSFs, which enable high-precision localization of nanoscale emitters in three dimensions over customizable axial (z) ranges of up to 20 μm with a high numerical aperture objective lens. To illustrate, we perform flow profiling in a microfluidic channel and show scan-free tracking of single quantum-dot-labeled phospholipid molecules on the surface of living, thick mammalian cells.

[1]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[2]  M. Smoluchowski Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen , 1906 .

[3]  J. Goodman Introduction to Fourier optics , 1969 .

[4]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[5]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[6]  M. Sheetz,et al.  Tracking kinesin-driven movements with nanometre-scale precision , 1988, Nature.

[7]  H. Qian,et al.  Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. , 1991, Biophysical journal.

[8]  S. Hell,et al.  Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index , 1993 .

[9]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[10]  H. P. Kao,et al.  Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. , 1994, Biophysical journal.

[11]  H Schindler,et al.  Imaging of single molecule diffusion. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  G. Kino,et al.  Confocal Scanning Optical Microscopy and Related Imaging Systems , 1996 .

[13]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.

[14]  Paul Yager,et al.  Silicon-microfabricated diffusion-based optical chemical sensor , 1997 .

[15]  S. Doglia,et al.  Technical report: Cell thickness measurements by confocal fluorescence microscopy on C3H10T1/2 and V79 cells. , 1998, International journal of radiation biology.

[16]  Jan Greve,et al.  Three dimensional single-particle tracking with nanometer resolution , 1998 .

[17]  B. Finlayson,et al.  Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. , 1999, Analytical chemistry.

[18]  A. Prasad Particle image velocimetry , 2000 .

[19]  Y. Schechner,et al.  Propagation-invariant wave fields with finite energy. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  P. Yager,et al.  Optical measurement of transverse molecular diffusion in a microchannel. , 2001, Biophysical journal.

[21]  Akihiro Kusumi,et al.  Phospholipids undergo hop diffusion in compartmentalized cell membrane , 2002, The Journal of cell biology.

[22]  M. Gustafsson,et al.  Phase‐retrieved pupil functions in wide‐field fluorescence microscopy , 2004, Journal of microscopy.

[23]  S. Ram,et al.  Localization accuracy in single-molecule microscopy. , 2004, Biophysical journal.

[24]  P. Doyle,et al.  Static and dynamic errors in particle tracking microrheology. , 2005, Biophysical journal.

[25]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[26]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[27]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[28]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[29]  Christopher A Werley,et al.  Single-molecule nanoprobes explore defects in spin-grown crystals. , 2006, The journal of physical chemistry. B.

[30]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[31]  Zemer Gitai,et al.  Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  L. Holtzer,et al.  Nanometric three-dimensional tracking of individual quantum dots in cells , 2007 .

[33]  N. Kotov,et al.  Three-dimensional cell culture matrices: state of the art. , 2008, Tissue engineering. Part B, Reviews.

[34]  S. Ram,et al.  High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. , 2008, Biophysical journal.

[35]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  Jerry Chao,et al.  Quantitative study of single molecule location estimation techniques. , 2009, Optics express.

[38]  Matthew D. Lew,et al.  Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. , 2010, Applied physics letters.

[39]  Keith A. Lidke,et al.  Fast, single-molecule localization that achieves theoretically minimum uncertainty , 2010, Nature Methods.

[40]  W. E. Moerner,et al.  Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. , 2010, Nano letters.

[41]  Matthew D Lew,et al.  Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. , 2011, Optics letters.

[42]  Aurélie Dupont,et al.  Nanoscale three-dimensional single particle tracking. , 2011, Nanoscale.

[43]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[44]  C. Cierpka,et al.  Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics , 2011, Journal of Visualization.

[45]  R. Kamm,et al.  Three-dimensional microfluidic model for tumor cell intravasation and endothelial barrier function , 2012, Proceedings of the National Academy of Sciences.

[46]  Matthew D Lew,et al.  Simultaneous, accurate measurement of the 3D position and orientation of single molecules , 2012, Proceedings of the National Academy of Sciences.

[47]  W E Moerner,et al.  Quantitative multicolor subdiffraction imaging of bacterial protein ultrastructures in three dimensions. , 2013, Nano letters.

[48]  W E Moerner,et al.  Super-resolution fluorescence imaging with single molecules. , 2013, Current opinion in structural biology.

[49]  Matthew D Lew,et al.  Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy. , 2013, Nano letters.

[50]  X. Zhuang,et al.  Isotropic 3D Super-resolution Imaging with a Self-bending Point Spread Function , 2014, Nature photonics.

[51]  Adam S. Backer,et al.  Extending Single-Molecule Microscopy Using Optical Fourier Processing , 2014, The journal of physical chemistry. B.

[52]  Adam S. Backer,et al.  Optimal point spread function design for 3D imaging. , 2014, Physical review letters.

[53]  Wei Zhang,et al.  Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy. , 2014, Optics letters.

[54]  Haw Yang,et al.  Multi-resolution 3D visualization of the early stages of cellular uptake of peptide-coated nanoparticles. , 2014, Nature nanotechnology.

[55]  Matthew D Lew,et al.  The role of molecular dipole orientation in single-molecule fluorescence microscopy and implications for super-resolution imaging. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[56]  A. Small,et al.  Fluorophore localization algorithms for super-resolution microscopy , 2014, Nature Methods.

[57]  M. Dahan,et al.  Whole-cell, multicolor superresolution imaging using volumetric multifocus microscopy , 2014, Proceedings of the National Academy of Sciences.

[58]  W E Moerner,et al.  A bisected pupil for studying single-molecule orientational dynamics and its application to three-dimensional super-resolution microscopy. , 2014, Applied physics letters.