Critical phase and spin sharpening in SU(2)-symmetric monitored quantum circuits

Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we numerically identify a"spin-sharpening transition."On one side is a phase in which the measurements can efficiently identify the system's total spin quantum number; on the other side is a phase in which measurements cannot.

[1]  Nicole Yunger Halpern,et al.  Noncommuting conserved charges in quantum thermodynamics and beyond , 2023, 2306.00054.

[2]  Nicole Yunger Halpern,et al.  What happens to entropy production when conserved quantities fail to commute with each other , 2023, 2305.15480.

[3]  A. Mirlin,et al.  Theory of Free Fermions under Random Projective Measurements , 2023, Physical Review X.

[4]  Michael J. Hoffmann,et al.  Quantum information phases in space-time: measurement-induced entanglement and teleportation on a noisy quantum processor , 2023, 2303.04792.

[5]  D. Bernard,et al.  Nonlinear Sigma Models for Monitored Dynamics of Free Fermions , 2023, Physical Review X.

[6]  I. Marvian (Non-)Universality in symmetric quantum circuits: Why Abelian symmetries are special , 2023, 2302.12466.

[7]  B. Bauer,et al.  Measurement-induced entanglement transitions in quantum circuits of non-interacting fermions: Born-rule versus forced measurements , 2023, 2302.09094.

[8]  F. Schmidt-Kaler,et al.  Coherence requirements for quantum communication from hybrid circuit dynamics , 2022, 2210.11547.

[9]  Nicole Yunger Halpern,et al.  Non-Abelian symmetry can increase entanglement entropy , 2022, Physical Review B.

[10]  M. Fisher,et al.  Random Quantum Circuits , 2022, Annual Review of Condensed Matter Physics.

[11]  P. Zoller,et al.  Practical quantum advantage in quantum simulation , 2022, Nature.

[12]  S. Gopalakrishnan,et al.  Transitions in the Learnability of Global Charges from Local Measurements. , 2022, Physical review letters.

[13]  Nicole Yunger Halpern,et al.  Non-Abelian Eigenstate Thermalization Hypothesis. , 2022, Physical review letters.

[14]  Jin Ming Koh,et al.  Measurement-induced entanglement phase transition on a superconducting quantum processor with mid-circuit readout , 2022, Nature Physics.

[15]  E. Altman,et al.  Measurement-Induced Power-Law Negativity in an Open Monitored Quantum Circuit. , 2022, Physical review letters.

[16]  R. Blatt,et al.  Experimental Observation of Thermalization with Noncommuting Charges , 2022, PRX Quantum.

[17]  Hanqing Liu,et al.  Rotationally Invariant Circuits: Universality with the Exchange Interaction and Two Ancilla Qubits , 2022, Physical Review Letters.

[18]  D. Huse,et al.  Field Theory of Charge Sharpening in Symmetric Monitored Quantum Circuits. , 2021, Physical review letters.

[19]  A. Potter,et al.  Entanglement dynamics in hybrid quantum circuits , 2021, 2111.08018.

[20]  Matthew A. Fisher,et al.  Decodable hybrid dynamics of open quantum systems with Z2 symmetry , 2021, Physical Review B.

[21]  S. Gopalakrishnan,et al.  Entanglement and Charge-Sharpening Transitions in U(1) Symmetric Monitored Quantum Circuits , 2021, Physical Review X.

[22]  D. Huse,et al.  Operator Scaling Dimensions and Multifractality at Measurement-Induced Transitions. , 2021, Physical review letters.

[23]  T. Rudolph,et al.  Relational quantum computing using only maximally mixed initial qubit states , 2021, 2107.03239.

[24]  D. Huse,et al.  Measurement-induced quantum phases realized in a trapped-ion quantum computer , 2021, Nature Physics.

[25]  Austin Hulse,et al.  Qudit circuits with SU(d) symmetry: Locality imposes additional conservation laws , 2021, 2105.12877.

[26]  Nicole Yunger Halpern,et al.  How to build Hamiltonians that transport noncommuting charges in quantum thermodynamics , 2021, npj Quantum Information.

[27]  Soonwon Choi,et al.  Symmetry enriched phases of quantum circuits , 2021, Annals of Physics.

[28]  M. Barkeshli,et al.  Topological Order and Criticality in (2+1)D Monitored Random Quantum Circuits. , 2020, Physical review letters.

[29]  A. Nahum,et al.  Measurement and Entanglement Phase Transitions in All-To-All Quantum Circuits, on Quantum Trees, and in Landau-Ginsburg Theory , 2020, 2009.11311.

[30]  R. Vasseur,et al.  Mean-field entanglement transitions in random tree tensor networks , 2020 .

[31]  M. Dalmonte,et al.  Measurement-induced criticality in (2+1) -dimensional hybrid quantum circuits , 2020, 2007.02970.

[32]  M. Buchhold,et al.  Entanglement Transition in a Monitored Free-Fermion Chain: From Extended Criticality to Area Law. , 2020, Physical review letters.

[33]  D. Huse,et al.  Entanglement Phase Transitions in Measurement-Only Dynamics , 2020, Physical Review X.

[34]  T. Hsieh,et al.  Measurement-protected quantum phases , 2020, Physical Review Research.

[35]  M. Fisher,et al.  Emergent conformal symmetry in nonunitary random dynamics of free fermions , 2020, Physical Review Research.

[36]  M. Barkeshli,et al.  Measurement-induced topological entanglement transitions in symmetric random quantum circuits , 2020, Nature Physics.

[37]  A. Ludwig,et al.  Conformal invariance and quantum nonlocality in critical hybrid circuits , 2020, Physical Review B.

[38]  I. Marvian Restrictions on realizable unitary operations imposed by symmetry and locality , 2020, Nature Physics.

[39]  Alicia J. Kollár,et al.  Quantum Simulators: Architectures and Opportunities , 2019, 1912.06938.

[40]  A. Nahum,et al.  Entanglement and dynamics of diffusion-annihilation processes with Majorana defects , 2019, 1911.11169.

[41]  D. Huse,et al.  Critical properties of the measurement-induced transition in random quantum circuits , 2019, Physical Review B.

[42]  D. Huse,et al.  Scalable Probes of Measurement-Induced Criticality. , 2019, Physical review letters.

[43]  A. Ludwig,et al.  Measurement-induced criticality in random quantum circuits , 2019, Physical Review B.

[44]  Soonwon Choi,et al.  Theory of the phase transition in random unitary circuits with measurements , 2019, Physical Review B.

[45]  Nicole Yunger Halpern,et al.  Noncommuting conserved charges in quantum many-body thermalization. , 2019, Physical review. E.

[46]  D. Huse,et al.  Dynamical Purification Phase Transition Induced by Quantum Measurements , 2019, Physical Review X.

[47]  H. Schomerus,et al.  Entanglement transition from variable-strength weak measurements , 2019, Physical Review B.

[48]  Matthew P. A. Fisher,et al.  Measurement-driven entanglement transition in hybrid quantum circuits , 2019, Physical Review B.

[49]  Matthew P. A. Fisher,et al.  Quantum Zeno effect and the many-body entanglement transition , 2018, Physical Review B.

[50]  Amos Chan,et al.  Unitary-projective entanglement dynamics , 2018, Physical Review B.

[51]  Brian Skinner,et al.  Measurement-Induced Phase Transitions in the Dynamics of Entanglement , 2018, Physical Review X.

[52]  Gonzalo Manzano,et al.  Squeezed thermal reservoir as a generalized equilibrium reservoir , 2018, Physical Review E.

[53]  Immanuel Bloch,et al.  Colloquium : Many-body localization, thermalization, and entanglement , 2018, Reviews of Modern Physics.

[54]  Antoine Tilloy,et al.  Entanglement in a fermion chain under continuous monitoring , 2018, SciPost Physics.

[55]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[56]  D. Huse,et al.  Operator Spreading and the Emergence of Dissipative Hydrodynamics under Unitary Evolution with Conservation Laws , 2017, Physical Review X.

[57]  F. Pollmann,et al.  Diffusive Hydrodynamics of Out-of-Time-Ordered Correlators with Charge Conservation , 2017, Physical Review X.

[58]  A. Nahum,et al.  Valence Bonds in Random Quantum Magnets: Theory and Application to YbMgGaO4 , 2017, Physical Review X.

[59]  A. J. Short,et al.  Thermodynamics of quantum systems with multiple conserved quantities , 2015, Nature Communications.

[60]  A. Winter,et al.  Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges , 2015, Nature Communications.

[61]  David Jennings,et al.  Thermodynamic resource theories, non-commutativity and maximum entropy principles , 2015, 1511.04420.

[62]  Gernot Schaller,et al.  Open Quantum Systems Far from Equilibrium , 2014 .

[63]  Stephen P. Jordan,et al.  Permutational quantum computing , 2009, Quantum Inf. Comput..

[64]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[65]  T. Rudolph,et al.  A relational quantum computer using only two-qubit total spin measurement and an initial supply of highly mixed single-qubit states , 2005, quant-ph/0503151.

[66]  G. Refael,et al.  Entanglement entropy of random quantum critical points in one dimension. , 2004, Physical review letters.

[67]  N. Read,et al.  Dense loops, supersymmetry, and Goldstone phases in two dimensions. , 2002, Physical review letters.

[68]  M. Srednicki,et al.  Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  J. Tobochnik,et al.  Physics of the dynamical critical exponent in one dimension , 1981 .

[70]  Nicole Yunger Halpern,et al.  Experimental observation of thermalisation with noncommuting charges , 2022 .