Probabilistic Models for Text Mining
暂无分享,去创建一个
[1] Jeff A. Bilmes,et al. A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .
[2] Eric P. Xing,et al. Dynamic Non-Parametric Mixture Models and the Recurrent Chinese Restaurant Process: with Applications to Evolutionary Clustering , 2008, SDM.
[3] Thomas L. Griffiths,et al. The nested chinese restaurant process and bayesian nonparametric inference of topic hierarchies , 2007, JACM.
[4] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[5] Carl Tim Kelley,et al. Iterative methods for optimization , 1999, Frontiers in applied mathematics.
[6] Ben Taskar,et al. Posterior Regularization for Structured Latent Variable Models , 2010, J. Mach. Learn. Res..
[7] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[8] Bei Yu,et al. A cross-collection mixture model for comparative text mining , 2004, KDD.
[9] Xu Ling,et al. Topic sentiment mixture: modeling facets and opinions in weblogs , 2007, WWW '07.
[10] J. Laurie Snell,et al. Markov Random Fields and Their Applications , 1980 .
[11] Mark E. J. Newman,et al. Power-Law Distributions in Empirical Data , 2007, SIAM Rev..
[12] Nir Friedman,et al. Probabilistic Graphical Models , 2009, Data-Driven Computational Neuroscience.
[13] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[14] Wei Li,et al. Early results for Named Entity Recognition with Conditional Random Fields, Feature Induction and Web-Enhanced Lexicons , 2003, CoNLL.
[15] Deng Cai,et al. Topic modeling with network regularization , 2008, WWW.
[16] L. Baum,et al. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .
[17] Richard M. Schwartz,et al. An Algorithm that Learns What's in a Name , 1999, Machine Learning.
[18] Dan Roth,et al. Integer Linear Programming in NLP - Constrained Conditional Models , 2010, NAACL.
[19] Nando de Freitas,et al. An Introduction to MCMC for Machine Learning , 2004, Machine Learning.
[20] Thomas Hofmann,et al. Probabilistic latent semantic indexing , 1999, SIGIR '99.
[21] Frank Dellaert,et al. The Expectation Maximization Algorithm , 2002 .
[22] Tom Minka,et al. Expectation Propagation for approximate Bayesian inference , 2001, UAI.
[23] J. Pitman,et al. The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator , 1997 .
[24] Sebastian Thrun,et al. Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.
[25] Thomas Hofmann,et al. Map-Reduce for Machine Learning on Multicore , 2007 .
[26] Susan T. Dumais,et al. A Bayesian Approach to Filtering Junk E-Mail , 1998, AAAI 1998.
[27] Ricardo da Silva Torres,et al. Diagnosing Similarity of Oscillation Trends in Time Series , 2007 .
[28] Lise Getoor,et al. Learning Probabilistic Relational Models , 1999, IJCAI.
[29] William S. Yerazunis,et al. Spam filtering using a Markov random field model with variable weighting schemas , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).
[30] L. Rabiner,et al. An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.
[31] Yee Whye Teh,et al. A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes , 2006, ACL.
[32] Hang Chen. Parallel implementations of probabilistic latent semantic analysis on graphic processing units , 2011 .
[33] Andrew McCallum,et al. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.
[34] Matthew Richardson,et al. Markov logic networks , 2006, Machine Learning.
[35] Eric P. Xing,et al. Timeline: A Dynamic Hierarchical Dirichlet Process Model for Recovering Birth/Death and Evolution of Topics in Text Stream , 2010, UAI.
[36] Jianwen Zhang,et al. Evolutionary hierarchical dirichlet processes for multiple correlated time-varying corpora , 2010, KDD.
[37] Fernando Pereira,et al. Shallow Parsing with Conditional Random Fields , 2003, NAACL.
[38] Jean-Michel Marin,et al. Bayesian Modelling and Inference on Mixtures of Distributions , 2005 .
[39] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[40] J. Lafferty,et al. Time-Sensitive Dirichlet Process Mixture Models , 2005 .
[41] Dan Roth,et al. Learning and Inference over Constrained Output , 2005, IJCAI.
[42] Jr. G. Forney,et al. The viterbi algorithm , 1973 .
[43] Thomas Hofmann,et al. Probabilistic Latent Semantic Analysis , 1999, UAI.
[44] Julian M. Kupiec,et al. Robust part-of-speech tagging using a hidden Markov model , 1992 .
[45] Max Welling,et al. Fast collapsed gibbs sampling for latent dirichlet allocation , 2008, KDD.
[46] Christopher D. Manning,et al. Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling , 2005, ACL.
[47] F. Cozman,et al. Generalizing variable elimination in Bayesian networks , 2000 .
[48] Yee Whye Teh,et al. Bayesian Nonparametric Models , 2010, Encyclopedia of Machine Learning.
[49] Marilyn Bohl,et al. Information processing , 1971 .
[50] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[51] Edward Y. Chang,et al. PLDA: Parallel Latent Dirichlet Allocation for Large-Scale Applications , 2009, AAIM.
[52] Dan Roth,et al. Integer linear programming inference for conditional random fields , 2005, ICML.
[53] Luis M. de Campos,et al. Bayesian networks and information retrieval: an introduction to the special issue , 2004, Inf. Process. Manag..
[54] Michael I. Jordan,et al. Variational inference for Dirichlet process mixtures , 2006 .
[55] W. Bruce Croft,et al. A Markov random field model for term dependencies , 2005, SIGIR '05.
[56] Yee Whye Teh,et al. Dirichlet Process , 2017, Encyclopedia of Machine Learning and Data Mining.
[57] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[58] Ming-Wei Chang,et al. Discriminative Learning over Constrained Latent Representations , 2010, NAACL.
[59] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[60] Michael I. Jordan. Graphical Models , 2003 .
[61] Carl E. Rasmussen,et al. The Infinite Gaussian Mixture Model , 1999, NIPS.
[62] Ramesh Nallapati,et al. Parallelized Variational EM for Latent Dirichlet Allocation: An Experimental Evaluation of Speed and Scalability , 2007, Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007).
[63] Michael I. Jordan,et al. Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.
[64] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[65] Andrew McCallum,et al. An Introduction to Conditional Random Fields for Relational Learning , 2007 .
[66] ChengXiang Zhai,et al. A mixture model for contextual text mining , 2006, KDD '06.
[67] SchwartzRichard,et al. An Algorithm that Learns Whats in a Name , 1999 .
[68] Sean Borman,et al. The Expectation Maximization Algorithm A short tutorial , 2006 .
[69] Max Welling,et al. Distributed Inference for Latent Dirichlet Allocation , 2007, NIPS.
[70] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[71] Yizhou Sun,et al. iTopicModel: Information Network-Integrated Topic Modeling , 2009, 2009 Ninth IEEE International Conference on Data Mining.
[72] Xiaojin Zhu,et al. Incorporating domain knowledge into topic modeling via Dirichlet Forest priors , 2009, ICML '09.
[73] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[74] M. Escobar,et al. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[75] Jiulong Shan,et al. Parallelization and Characterization of Probabilistic Latent Semantic Analysis , 2008, 2008 37th International Conference on Parallel Processing.