Biopharmaceutics classification and intestinal absorption study of apigenin.

[1]  J. Wood,et al.  Improved holder for intrinsic dissolution rate studies. , 1965, Journal of pharmaceutical sciences.

[2]  M. Hayashi,et al.  Intestinal absorption of dl-alpha-tocopherol from bile salts and polysorbate 80 micellar solutions in rat. , 1983, Journal of pharmacobio-dynamics.

[3]  P. Artursson,et al.  Epithelial transport of drugs in cell culture. VIII: Effects of sodium dodecyl sulfate on cell membrane and tight junction permeability in human intestinal epithelial (Caco-2) cells. , 1993, Journal of pharmaceutical sciences.

[4]  K. Hillgren,et al.  In vitro systems for studying intestinal drug absorption , 1995, Medicinal research reviews.

[5]  B. Li,et al.  Evaluation of properties of apigenin and [G-3H]apigenin and analytic method development. , 1997, Journal of pharmaceutical sciences.

[6]  Johanna T. Dwyer,et al.  Flavonoids: Dietary occurrence and biochemical activity , 1998 .

[7]  H. Shinmoto,et al.  Structure-activity relationships of flavonoids and the induction of granulocytic- or monocytic-differentiation in HL60 human myeloid leukemia cells. , 1998, Bioscience, biotechnology, and biochemistry.

[8]  H. Lennernäs,et al.  High in situ rat intestinal permeability of artemisinin unaffected by multiple dosing and with no evidence of P-glycoprotein involvement. , 1999, Drug metabolism and disposition: the biological fate of chemicals.

[9]  J. Pelling,et al.  Cell‐Cycle Arrest at G2/M and Growth Inhibition by Apigenin in Human Colon Carcinoma Cell Lines , 2000, Molecular carcinogenesis.

[10]  A. Giuliano,et al.  Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. , 2001, Anticancer research.

[11]  Michael Levin Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System , 2001 .

[12]  T. Viegas,et al.  Measurement of Intrinsic Drug Dissolution Rates Using Two Types of Apparatus , 2001 .

[13]  L. Salphati,et al.  Evaluation of a single‐pass intestinal‐perfusion method in rat for the prediction of absorption in man , 2001, The Journal of pharmacy and pharmacology.

[14]  Ronald T Borchardt,et al.  A comparison of commonly used polyethoxylated pharmaceutical excipients on their ability to inhibit P-glycoprotein activity in vitro. , 2002, Journal of pharmaceutical sciences.

[15]  J. Ross,et al.  Dietary flavonoids: bioavailability, metabolic effects, and safety. , 2002, Annual review of nutrition.

[16]  Yutaka Takahashi,et al.  Common solubilizers to estimate the Caco-2 transport of poorly water-soluble drugs. , 2002, International journal of pharmaceutics.

[17]  Ming Hu,et al.  Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model. , 2002, Drug metabolism and disposition: the biological fate of chemicals.

[18]  William J Egan,et al.  Prediction of intestinal permeability. , 2002, Advanced drug delivery reviews.

[19]  Huimin Lin,et al.  Metabolism of Flavonoids via Enteric Recycling: Mechanistic Studies of Disposition of Apigenin in the Caco-2 Cell Culture Model , 2003, Journal of Pharmacology and Experimental Therapeutics.

[20]  L. Novotný,et al.  The free radical scavenging activity of four flavonoids determined by the comet assay. , 2003, Neoplasma.

[21]  Huimin Lin,et al.  Metabolism of Flavonoids via Enteric Recycling: Role of Intestinal Disposition , 2003, Journal of Pharmacology and Experimental Therapeutics.

[22]  T. J. Cook,et al.  Intestinal permeability of chlorpyrifos using the single-pass intestinal perfusion method in the rat. , 2003, Toxicology.

[23]  Georges Houin,et al.  Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. , 2004, International journal of pharmaceutics.

[24]  Panos Macheras,et al.  Quantitative Biopharmaceutics Classification System: The Central Role of Dose/Solubility Ratio , 2003, Pharmaceutical Research.

[25]  Hans Lennernäs,et al.  Comparison Between Permeability Coefficients in Rat and Human Jejunum , 1996, Pharmaceutical Research.

[26]  Akira Yamamoto,et al.  Modulation of intestinal P-glycoprotein function by cremophor EL and other surfactants by an in vitro diffusion chamber method using the isolated rat intestinal membranes. , 2004, Journal of pharmaceutical sciences.

[27]  Lawrence X. Yu,et al.  Feasibility studies of utilizing disk intrinsic dissolution rate to classify drugs. , 2004, International journal of pharmaceutics.

[28]  Leslie Z. Benet,et al.  Predicting Drug Disposition via Application of BCS: Transport/Absorption/ Elimination Interplay and Development of a Biopharmaceutics Drug Disposition Classification System , 2004, Pharmaceutical Research.

[29]  W. Curatolo,et al.  Intestinal Permeability Enhancement: Efficacy, Acute Local Toxicity, and Reversibility , 1994, Pharmaceutical Research.

[30]  M. Varma,et al.  Simultaneous determination of digoxin and permeability markers in rat in situ intestinal perfusion samples by RP-HPLC. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[31]  J. Crison,et al.  A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability , 1995, Pharmaceutical Research.

[32]  Jennifer B Dressman,et al.  Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[33]  Patrick J. Sinko,et al.  Estimating Human Oral Fraction Dose Absorbed: A Correlation Using Rat Intestinal Membrane Permeability for Passive and Carrier-Mediated Compounds , 2004, Pharmaceutical Research.

[34]  T. Adrian,et al.  Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest , 2006, Molecular Cancer.

[35]  R. Bergès,et al.  PHARMACOKINETICS AND METABOLISM OF APIGENIN IN FEMALE AND MALE RATS AFTER A SINGLE ORAL ADMINISTRATION , 2005, Drug Metabolism and Disposition.

[36]  Berith F. Jensen,et al.  In silico prediction of membrane permeability from calculated molecular parameters. , 2005, Journal of medicinal chemistry.

[37]  N. Medlicott,et al.  Physicochemical characterization of ricobendazole: I. Solubility, lipophilicity, and ionization characteristics. , 2005, Journal of pharmaceutical sciences.

[38]  M. Varma,et al.  Prediction of in vivo intestinal absorption enhancement on P-glycoprotein inhibition, from rat in situ permeability. , 2005, Journal of pharmaceutical sciences.

[39]  Z. Zuo,et al.  Role of Intestinal First-Pass Metabolism of Baicalein in its Absorption Process , 2005, Pharmaceutical Research.

[40]  C. Porter,et al.  Permeability assessment of poorly water-soluble compounds under solubilizing conditions: the reciprocal permeability approach. , 2006, Journal of pharmaceutical sciences.

[41]  Anne Marie Healy,et al.  Evaluation of hydrodynamics in the basket dissolution apparatus using computational fluid dynamics--dissolution rate implications. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[42]  J. Pelling,et al.  Apigenin Prevents UVB-Induced Cyclooxygenase 2 Expression: Coupled mRNA Stabilization and Translational Inhibition , 2006, Molecular and Cellular Biology.

[43]  Dae-Duk Kim,et al.  Enhancing effect of surfactants on fexofenadine.HCl transport across the human nasal epithelial cell monolayer. , 2007, International journal of pharmaceutics.

[44]  Z. Zuo,et al.  Mechanistic study on the intestinal absorption and disposition of baicalein. , 2007, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[45]  B. Rosner,et al.  A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer , 2007, International journal of cancer.

[46]  Vinod P. Shah,et al.  The Use of BDDCS in Classifying the Permeability of Marketed Drugs , 2008, Pharmaceutical Research.

[47]  Lawrence X. Yu,et al.  Classification of Drug Permeability with a Caco-2 Cell Monolayer Assay , 2007 .

[48]  G. Favaro,et al.  Acidichromism and Ionochromism of Luteolin and Apigenin, the Main Components of the Naturally Occurring Yellow Weld: A Spectrophotometric and Fluorimetric Study , 2007, Journal of Fluorescence.

[49]  Christopher J H Porter,et al.  Impact of cremophor-EL and polysorbate-80 on digoxin permeability across rat jejunum: delineation of thermodynamic and transporter related events using the reciprocal permeability approach. , 2007, Journal of pharmaceutical sciences.

[50]  M. Barzegar-Jalali,et al.  Predicting human intestinal permeability using single-pass intestinal perfusion in rat. , 2007, Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques.

[51]  M. Sherry Ku,et al.  Use of the Biopharmaceutical Classification System in Early Drug Development , 2008, The AAPS Journal.

[52]  W. Addicks,et al.  Application of the Biopharmaceutical Classification System in Clinical Drug Development—An Industrial View , 2008, The AAPS Journal.

[53]  A. Dokoumetzidis,et al.  Biopharmaceutics classification systems for new molecular entities (BCS-NMEs) and marketed drugs (BCS-MD): theoretical basis and practical examples. , 2008, International journal of pharmaceutics.

[54]  J. Dai,et al.  Transport and metabolism of flavonoids from Chinese herbal remedy Xiaochaihu-tang across human intestinal Caco-2 cell monolayers , 2008, Acta Pharmacologica Sinica.

[55]  C. Logan Use of Animals for the Determination of Absorption and Bioavailability , 2008 .

[56]  Beom-Jin Lee,et al.  Metabolic inhibition and kinetics of raloxifene by pharmaceutical excipients in human liver microsomes. , 2009, International journal of pharmaceutics.

[57]  B. Rosner,et al.  Flavonoid intake and ovarian cancer risk in a population‐based case‐control study , 2009, International journal of cancer.

[58]  Hadi Valizadeh,et al.  Biopharmaceutical classification of drugs using intrinsic dissolution rate (IDR) and rat intestinal permeability. , 2009, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[59]  A. Naik,et al.  Determination of Site of Absorption of Propranolol in Rat Gut Using In Situ Single-Pass Intestinal Perfusion , 2010, Indian journal of pharmaceutical sciences.

[60]  Yang Lu,et al.  In Situ and in Vivo Study of Nasal Absorption of Paeonol in Rats , 2010, International journal of molecular sciences.

[61]  P. Annaert,et al.  Validation of a differential in situ perfusion method with mesenteric blood sampling in rats for intestinal drug interaction profiling , 2010, Biopharmaceutics & drug disposition.

[62]  R. Borchardt,et al.  Absorption barriers in the rat intestinal mucosa. 3: Effects of polyethoxylated solubilizing agents on drug permeation and metabolism. , 2010, Journal of pharmaceutical sciences.

[63]  J. Qiu,et al.  Excipients enhance intestinal absorption of ganciclovir by P-gp inhibition: assessed in vitro by everted gut sac and in situ by improved intestinal perfusion. , 2011, International journal of pharmaceutics.

[64]  T. Mashino,et al.  Anti-inflammatory activity of structurally related flavonoids, Apigenin, Luteolin and Fisetin. , 2011, International immunopharmacology.

[65]  Werner Weitschies,et al.  Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[66]  Comparison of Intestinal Absorption and Disposition of Structurally Similar Bioactive Flavones in Radix Scutellariae , 2012, The AAPS Journal.