Variational studies of the importance of triple and quadruple excitations on the barrier height for F+H2→FH+H

Configuration interaction (CI) methods including all single, double, triple, and quadruple (SDTQ) excitations have been applied with several basis sets to the prediction of the barrier height for the F+H2 reaction.

[1]  S. Langhoff,et al.  Theoretical studies of the potential surface for the F+H2→HF+H reaction , 1988 .

[2]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[3]  C. Bauschlicher,et al.  Full CI studies of the collinear transition state for the reaction F+H2→HF+H , 1987 .

[4]  H. Schaefer,et al.  Methylene: A Paradigm for Computational Quantum Chemistry , 1986, Science.

[5]  H. Schaefer F + H/sub 2/ potential energy surface: the ecstasy and the agony , 1985 .

[6]  H. Schaefer,et al.  Further theoretical examination of the F + H2 entrance channel barrier , 1985 .

[7]  Per E. M. Siegbahn,et al.  Singlet and triplet energy surfaces of NiH2 , 1983 .

[8]  H. Schaefer,et al.  Analytic configuration interaction (CI) gradient techniques for potential energy hypersurfaces. A method for open-shell molecular wave functions , 1981 .

[9]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[10]  Bernard Pullman,et al.  The World of Quantum Chemistry , 1974 .

[11]  Ernest R. Davidson,et al.  Configuration interaction calculations on the nitrogen molecule , 1974 .

[12]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[13]  C. C. J. Roothaan,et al.  Self-Consistent Field Theory for Open Shells of Electronic Systems , 1960 .