Second-order analysis by variograms for curvature measures of two-phase structures
暂无分享,去创建一个
Christoph H. Arns | Dietrich Stoyan | Klaus Mecke | D. Stoyan | J. Mecke | K. Mecke | C. Arns | J Mecke | D. Stoyan | Dietrich Stoyan | Klaus Mecke
[1] Daniel A. Klain,et al. Introduction to Geometric Probability , 1997 .
[2] William H. Press,et al. Numerical recipes in Fortran 90: the art of parallel scientific computing, 2nd Edition , 1996, Fortran numerical recipes.
[3] Salvatore Torquato,et al. Microstructure of two-phase random media.III: The n-point matrix probability functions for fully penetrable spheres , 1983 .
[4] G. Porod,et al. Röntgenkleinwinkelstreuung an kolloiden Systemen Asymptotisches Verhalten der Streukurven , 1962 .
[5] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[6] Schwartz,et al. Self-diffusion in a periodic porous medium: A comparison of different approaches. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[7] K. Mecke,et al. Morphological fluctuations of large-scale structure: The PSCz survey , 2001 .
[8] D Stoyan,et al. Improved estimation of the pair correlation function of random sets , 2000, Journal of microscopy.
[9] D Stoyan,et al. On the estimation variance for the specific Euler–Poincaré characteristic of random networks , 2003, Journal of microscopy.
[10] Remo Guidieri. Res , 1995, RES: Anthropology and Aesthetics.
[11] Christoph H. Arns,et al. Virtual Materials Design: Properties of Cellular Solids Derived from 3D Tomographic Images , 2005 .
[12] W. B. Lindquist,et al. Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontaineble , 2000 .
[13] Klaus Mecke,et al. Statistical Physics and Spatial Statistics , 2000 .
[14] C Bozzi,et al. Measurements of CP-violating asymmetries in B0-->K(0)(s)pi(0) decays. , 2004, Physical review letters.
[15] Nicos Martys,et al. Virtual permeametry on microtomographic images , 2004 .
[16] Klaus Mecke,et al. Simulating stochastic geometries: morphology of overlapping grains , 2002 .
[17] M. P. Levin,et al. Numerical Recipes In Fortran 90: The Art Of Parallel Scientific Computing , 1998, IEEE Concurrency.
[18] Adrian Sheppard,et al. Techniques for image enhancement and segmentation of tomographic images of porous materials , 2004 .
[19] S. Torquato. Random Heterogeneous Materials , 2002 .
[20] Keith W. Jones,et al. Synchrotron computed microtomography of porous media: Topology and transports. , 1994, Physical review letters.
[21] D. Marcotte. Fast variogram computation with FFT , 1996 .
[22] W. Brent Lindquist,et al. Image Thresholding by Indicator Kriging , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[23] W. B. Lindquist,et al. Investigating 3D geometry of porous media from high resolution images , 1999 .
[24] Tim Sawkins,et al. X-ray tomography for mesoscale physics applications , 2004 .
[25] J. Thovert,et al. Grain reconstruction of porous media: application to a low-porosity Fontainebleau sandstone. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[26] S. Torquato,et al. Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .
[27] Jean-Paul Chilbs,et al. Geostatistics , 2000, Technometrics.
[28] I. R. Mcdonald,et al. Theory of simple liquids , 1998 .
[29] Christoph H. Arns,et al. Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment , 2002 .
[30] Nicos Martys,et al. Transport in sandstone: A study based on three dimensional microtomography , 1996 .
[31] S. Torquato,et al. Reconstructing random media , 1998 .
[32] J. T. Fredrich,et al. 3D imaging of porous media using laser scanning confocal microscopy with application to microscale transport processes , 1999 .
[33] P-M König,et al. Morphological thermodynamics of fluids: shape dependence of free energies. , 2004, Physical review letters.
[34] G. Porod,et al. Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen , 1952 .
[35] Exact Moments of Curvature Measures in the Boolean Model , 2001 .
[36] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[37] Klaus Mecke,et al. Integral Geometry in Statistical Physics , 1998 .
[38] H. R. Anderson,et al. Scattering by an Inhomogeneous Solid. II. The Correlation Function and Its Application , 1957 .
[39] J. Ohser,et al. Spectral theory for random closed sets and estimating the covariance via frequency space , 2003, Advances in Applied Probability.
[40] A. Guinier,et al. La diffraction des rayons X aux très petits angles : application à l'étude de phénomènes ultramicroscopiques , 1939 .
[41] D. Stoyan,et al. Random set models in the interpretation of small‐angle scattering data , 1981 .
[42] Christoph H. Arns,et al. Polymeric foam properties derived from 3D images , 2004 .
[43] L. Rayleigh. The Incidence of Light upon a Transparent Sphere of Dimensions Comparable with the Wave-Length , 1910 .
[44] Christoph H. Arns,et al. Accurate estimation of transport properties from microtomographic images , 2001 .
[45] S. Torquato,et al. Computer simulation results for the two-point probability function of composite media , 1988 .
[46] K. Ball. CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .
[47] S. Torquato,et al. Reconstructing random media. II. Three-dimensional media from two-dimensional cuts , 1998 .
[48] K. Mecke,et al. Reconstructing complex materials via effective grain shapes. , 2003, Physical review letters.
[49] E. Glandt,et al. Spatial correlation functions from computer simulations , 1986 .
[50] D. Stoyan,et al. Statistical Analysis of Simulated Random Packings of Spheres , 2002 .