Obscurance-based Volume Rendering Framework

Obscurances, from which ambient occlusion is a particular case, is a technology that produces natural-looking lighting effects in a faster way than global illumination. Its application in volume visualization is of special interest since it permits us to generate a high quality rendering at a low cost. In this paper, we propose an obscurancebased framework that allows us to obtain realistic and illustrative volume visualizations in an interactive manner. Obscurances can include color bleeding effects without additional cost. Moreover, we obtain a saliency map from the gradient of obscurances and we show its application to enhance volume visualization and to select the most salient views.

[1]  Amitabh Varshney,et al.  Saliency-guided Enhancement for Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[2]  Charles D. Hansen,et al.  Interactive display of isosurfaces with global illumination , 2006, IEEE Transactions on Visualization and Computer Graphics.

[3]  Àlex Méndez-Feliu,et al.  Real-time obscurances with color bleeding , 2003, SCCG '03.

[4]  Mateu Sbert,et al.  A unified information-theoretic framework for viewpoint selection and mesh saliency , 2009, TAP.

[5]  Mateu Sbert,et al.  Viewpoint-Based Ambient Occlusion , 2008, IEEE Computer Graphics and Applications.

[6]  Sergey Zhukov,et al.  An Ambient Light Illumination Model , 1998, Rendering Techniques.

[7]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[8]  L. Itti,et al.  A brief and selective history of attention , 2005 .

[9]  Àlex Méndez-Feliu,et al.  From obscurances to ambient occlusion: A survey , 2009, The Visual Computer.

[10]  Mateu Sbert,et al.  Fast, realistic lighting for video games , 2003, IEEE Computer Graphics and Applications.

[11]  David W. Jacobs,et al.  Mesh saliency , 2005, SIGGRAPH 2005.

[12]  Hayden Landis,et al.  Production-Ready Global Illumination , 2004 .

[13]  László Neumann,et al.  Gradient Estimation in Volume Data using 4D Linear Regression , 2000, Comput. Graph. Forum.

[14]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[15]  David S. Ebert,et al.  Volume illustration: non-photorealistic rendering of volume models , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[16]  Joost van de Weijer,et al.  Boosting color saliency in image feature detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Timo Ropinski,et al.  Interactive Volume Rendering with Dynamic Ambient Occlusion and Color Bleeding , 2008, Comput. Graph. Forum.

[18]  A. James Stewart,et al.  Vicinity shading for enhanced perception of volumetric data , 2003, IEEE Visualization, 2003. VIS 2003..

[19]  Anders Ynnerman,et al.  Efficient Ambient and Emissive Tissue Illumination using Local Occlusion in Multiresolution Volume Rendering , 2007, VG@Eurographics.

[20]  David W. Jacobs,et al.  Mesh saliency , 2005, ACM Trans. Graph..