A Large-Signal Model for Two-Dimensional Hole Gas Diamond MOSFET Based on the QPZD

A compact large-signal model for hydrogen-terminated (C–H) diamond metal-oxide field effect transistors (MOSFETs) is presented based on an improved quasi-physical zone division (QPZD) model. Unlike the conventional QPZD model for the AlGaN/GaN high-electron-mobility transistors (HEMTs), the linear-mode current-voltage (I-V) model of the diamond FET is analytically deduced with an improved velocity-electric field relation and temperature-dependent effective hole mobility <inline-formula> <tex-math notation="LaTeX">$\mu _{\mathrm {eff}}(T)$ </tex-math></inline-formula>. The I–V model can directly demonstrate the relation between the negative <inline-formula> <tex-math notation="LaTeX">$V_{\mathrm {ds}} $ </tex-math></inline-formula> and the negative <inline-formula> <tex-math notation="LaTeX">$I_{\mathrm {ds}}$ </tex-math></inline-formula> of the p-type diamond FETs, which cannot be achieved by the conventional QPZD model. Finally, the proposed model has been verified by the on-wafer measurements of an in-house <inline-formula> <tex-math notation="LaTeX">$2\times 500\,\,\mu \text{m}$ </tex-math></inline-formula> diamond FET. The good consistency shows that the presented compact large-signal model can accurately predict the DC I-V, multibias scattering-parameters (S-parameters), and large-signal performances. The results of this paper will be useful for the microwave diamond-based transistor and circuit designs.

[1]  R. J. Trew,et al.  A Compact Physical AlGaN/GaN HFET Model , 2013, IEEE Transactions on Electron Devices.

[2]  Paul J. Sellin,et al.  Low temperature time of flight mobility measurements on synthetic single crystal diamond , 2009 .

[3]  V. Camarchia,et al.  An overview on recent developments in RF and microwave power H-terminated diamond MESFET technology , 2014, 2014 International Workshop on Integrated Nonlinear Microwave and Millimetre-wave Circuits (INMMiC).

[4]  Ruimin Xu,et al.  A parameter extraction method for GaN HEMT empirical large‐signal model including self‐heating and trapping effects , 2017 .

[5]  F. Udrea,et al.  200V, 4MV/cm lateral diamond MOSFET , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[6]  Hong Yin,et al.  A new physics-based compact model for AlGaN/GaN HFETs , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[7]  K.Y. Fu Mobility degradation due to the gate field in the inversion layer of MOSFET's , 1982, IEEE Electron Device Letters.

[8]  Griff L. Bilbro,et al.  Harmonic balance simulation of a new physics based model of the AlGaN/GaN HFET , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[9]  Yue Hao,et al.  Diamond Field Effect Transistors With MoO3 Gate Dielectric , 2017, IEEE Electron Device Letters.

[10]  Zhengyi Cao,et al.  A High Frequency Hydrogen-Terminated Diamond MISFET With ${f}_{{\text{T}}}/{f}_{\max}$ of 70/80 GHz , 2018, IEEE Electron Device Letters.

[11]  Bo Yan,et al.  Temperature‐dependent small signal performance of GaN‐on‐diamond HEMTs , 2019, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields.

[12]  Ruimin Xu,et al.  An Electrothermal Model for Empirical Large- Signal Modeling of AlGaN/GaN HEMTs Including Self-Heating and Ambient Temperature Effects , 2014, IEEE Transactions on Microwave Theory and Techniques.

[13]  H. Kawarada,et al.  High-performance p-channel diamond MOSFETs with alumina gate insulator , 2007, 2007 IEEE International Electron Devices Meeting.

[14]  Yao Li,et al.  Characterization and mobility analysis of MoO3-gated diamond MOSFET , 2017 .

[15]  P. Roblin,et al.  A MODFET dc model with improved pinchoff and saturation characteristics , 1986, IEEE Transactions on Electron Devices.

[16]  Tomás Palacios,et al.  Study of RF-circuit linearity performance of GaN HEMT technology using the MVSG compact device model , 2016, 2016 IEEE International Electron Devices Meeting (IEDM).

[17]  T. Fjeldly,et al.  Compact Charge-Based Physical Models for Current and Capacitances in AlGaN/GaN HEMTs , 2013, IEEE Transactions on Electron Devices.

[18]  C.G. Sodini,et al.  The effect of high fields on MOS device and circuit performance , 1984, IEEE Transactions on Electron Devices.

[19]  Koji Kajimura,et al.  Study of the effect of hydrogen on transport properties in chemical vapor deposited diamond films by Hall measurements , 1996 .

[20]  D. Twitchen,et al.  High Carrier Mobility in Single-Crystal Plasma-Deposited Diamond , 2002, Science.

[21]  H. Kawarada,et al.  Diamond MOSFETs using 2D hole gas with 1700V breakdown voltage , 2016, 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD).

[22]  Ruimin Xu,et al.  Performance Comparison of GaN HEMTs on Diamond and SiC Substrates Based on Surface Potential Model , 2017 .

[23]  Hiroshi Kawarada,et al.  3.8 W/mm RF Power Density for ALD Al2O3-Based Two-Dimensional Hole Gas Diamond MOSFET Operating at Saturation Velocity , 2019, IEEE Electron Device Letters.

[24]  Takahiro Imai,et al.  Properties of Boron-Doped Epitaxial Diamond Films , 1990 .

[25]  Aloke K. Dutta,et al.  Analytical Models for the 2DEG Density, AlGaN Layer Carrier Density, and Drain Current for AlGaN/GaN HEMTs , 2018, IEEE Transactions on Electron Devices.

[26]  Bo Yan,et al.  Characterization and Modeling of Hydrogen-Terminated MOSFETs With Single-Crystal and Polycrystalline Diamond , 2018, IEEE Electron Device Letters.

[27]  Makoto Kasu,et al.  Study on capacitance–voltage characteristics of diamond field-effect transistors with NO2 hole doping and Al2O3 gate insulator layer , 2016 .

[28]  Bo Yan,et al.  A Scalable Multiharmonic Surface-Potential Model of AlGaN/GaN HEMTs , 2018, IEEE Transactions on Microwave Theory and Techniques.

[29]  Ernesto Limiti,et al.  Accurate large-signal equivalent circuit of surface channel diamond FETs based on the Chalmers model , 2012 .

[30]  Joan M. Redwing,et al.  Measurement of drift mobility in AlGaN/GaN heterostructure field-effect transistor , 1999 .

[31]  Hiroshi Kawarada,et al.  Normally-Off C–H Diamond MOSFETs With Partial C–O Channel Achieving 2-kV Breakdown Voltage , 2017, IEEE Electron Device Letters.

[32]  Juin J. Liou,et al.  An Explicit Surface Potential Calculation and Compact Current Model for AlGaN/GaN HEMTs , 2015, IEEE Electron Device Letters.

[33]  Y. Ayasli,et al.  DC and microwave models for AlxGa1-xAs/GaAs high electron mobility transistors , 1984 .

[34]  A. Zrenner,et al.  Electronic properties of the 2D-hole accumulation layer on hydrogen terminated diamond , 2004 .

[35]  Walter Ciccognani,et al.  V2O5 MISFETs on H-Terminated Diamond , 2016, IEEE Transactions on Electron Devices.

[36]  Ruimin Xu,et al.  A Quasi-Physical Compact Large-Signal Model for AlGaN/GaN HEMTs , 2017, IEEE Transactions on Microwave Theory and Techniques.

[37]  Kenji Ueda,et al.  High RF output power for H-terminated diamond FETs , 2006 .

[38]  Yao Li,et al.  Mobility of Two‐Dimensional Hole Gas in H‐Terminated Diamond , 2018 .

[39]  David A. J. Moran,et al.  RF Operation of Hydrogen-Terminated Diamond Field Effect Transistors: A Comparative Study , 2015, IEEE Transactions on Electron Devices.

[40]  J.J. Liou,et al.  Extraction of the threshold voltage of MOSFETs: an overview , 1997, 1997 IEEE Hong Kong Proceedings Electron Devices Meeting.

[41]  A. V. Khomich,et al.  Thermal conductivity of CVD diamond at elevated temperatures , 2005 .

[42]  Christoph E. Nebel,et al.  Surface electronic properties of H‐terminated diamond in contact with adsorbates and electrolytes , 2006 .

[43]  Satoshi Koizumi,et al.  Effect of n‐ and p‐type doping concentrations and compensation on the electrical properties of semiconducting diamond , 2016 .

[44]  Hiroshi Kawarada High-Current Metal Oxide Semiconductor Field-Effect Transistors on H-Terminated Diamond Surfaces and Their High-Frequency Operation , 2012 .

[45]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.