Improved piezoelectric and strain performance of Na2B4O7-doped (Li,K,Na)NbO3 lead-free piezoceramics

[1]  Jianguo Zhu,et al.  Recent development in lead-free perovskite piezoelectric bulk materials , 2018, Progress in Materials Science.

[2]  Jianguo Zhu,et al.  The structural origin of enhanced piezoelectric performance and stability in lead free ceramics , 2017 .

[3]  Haibo Jin,et al.  Enhanced Field‐Induced Strain in the Textured Lead‐Free Ceramic , 2016 .

[4]  Jianguo Zhu,et al.  Giant Piezoelectricity and High Curie Temperature in Nanostructured Alkali Niobate Lead-Free Piezoceramics through Phase Coexistence. , 2016, Journal of the American Chemical Society.

[5]  Jingbo Li,et al.  Comprehensive investigation of Er2O3 doped (Li,K,Na)NbO3 ceramics rendering potential application in novel multifunctional devices , 2016 .

[6]  Jianguo Zhu,et al.  Superior Piezoelectric Properties in Potassium–Sodium Niobate Lead‐Free Ceramics , 2016, Advanced materials.

[7]  Jingbo Li,et al.  Effect of phase structure changes on the lead-free Er3+-doped (K0.52Na0.48)1−xLixNbO3 piezoelectric ceramics , 2016 .

[8]  J. Zhai,et al.  Effect of orthorhombic-tetragonal phase transition on structure and piezoelectric properties of KNN-based lead-free ceramics. , 2015, Dalton transactions.

[9]  Jianguo Zhu,et al.  Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. , 2015, Chemical reviews.

[10]  Yongjie Zhao,et al.  Effects of sintering temperature and poling process on Li0.058(Na0.51K0.49)0.942NbO3 piezoceramics , 2014 .

[11]  Yongjie Zhao,et al.  The correlation between the microstructure and macroscopic properties of (K,Na,Li)(Nb,Ta)O3 ceramic via rare earth oxide doping , 2014 .

[12]  Doru C. Lupascu,et al.  Temperature‐Insensitive (K,Na)NbO3‐Based Lead‐Free Piezoactuator Ceramics , 2013 .

[13]  Yongjie Zhao,et al.  Enhanced dielectric and piezoelectric properties in Li/Sb-modified (Na, K)NbO3 ceramics by optimizing sintering temperature , 2013 .

[14]  Yongjie Zhao,et al.  Phase structure of Li0.058(Na0.51K0.49)0.942NbO3 lead-free piezoelectric ceramics , 2012 .

[15]  Heping Zhou,et al.  Poling field dependence of ferroelectric domains in tetragonal KNNLN ceramics , 2012 .

[16]  Yongjie Zhao,et al.  Influence of B-site non-stoichiometry on structure and electrical properties of KNLNS lead-free piezoelectric ceramics , 2012 .

[17]  Yongjie Zhao,et al.  The effect of sintering and poling processing on the phase structure of Li0.058(Na0.51K0.49)0.942NbO3 lead-free ceramics , 2012 .

[18]  Yongjie Zhao,et al.  Enhanced piezoelectric properties of Fe2O3–2TiO2 codoped Li0.05(Na0.5K0.5)0.95(Nb0.975Sb0.025)O3 lead-free ceramics with uniform microstructure , 2011 .

[19]  Yongjie Zhao,et al.  Microstructure and piezoelectric properties of CuO-doped 0.95(K0.5Na0.5)NbO3–0.05Li(Nb0.5Sb0.5)O3 lead-free ceramics , 2011 .

[20]  Yongjie Zhao,et al.  Effects of sintering temperature and alkaline elements excess on the structure and electrical properties of (K0.462Na0.48Li0.058)1+xNbO3 lead-free piezoelectric ceramics , 2011 .

[21]  Yongjie Zhao,et al.  Effect of Changing Na/K Ratio on Structure and Electrical Properties of (NaxKy) (Nb0.885Sb0.08)–0.035LiTaO3 Lead‐Free Piezoelectric Ceramics , 2011 .

[22]  Yongjie Zhao,et al.  Effect of Sintering Temperature on Microstructure and Electric Properties of 0.95(K0.5Na0.5)NbO3–0.05Li(Nb0.5Sb0.5)O3with Copper Oxide Sintering Aid , 2011 .

[23]  T. Comyn,et al.  Temperature stability of ([Na0.5K0.5NbO3]0.93–[LiTaO3]0.07) lead-free piezoelectric ceramics , 2009 .

[24]  Dragan Damjanovic,et al.  Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics , 2009, Journal of Applied Physics.

[25]  Wolfram Wersing,et al.  Piezoelectricity: Evolution and Future of a Technology , 2008 .

[26]  S. Qu,et al.  Sintering Characteristic, Microstructure, and Dielectric Relaxor Behavior of (K0.5Na0.5)NbO3–(Bi0.5Na0.5)TiO3 Lead-Free Ceramics , 2008 .

[27]  Jianguo Zhu,et al.  Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead-free piezoelectric ceramics , 2008 .

[28]  Thomas R. Shrout,et al.  Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range , 2007 .

[29]  Xiaowen Zhang,et al.  Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics , 2007 .

[30]  N. Setter,et al.  Temperature stability of the piezoelectric properties of Li-modified KNN ceramics , 2007 .

[31]  Xiaowen Zhang,et al.  Ferroelectric 90° Domain Evaluation in Tetragonal Pb(Mg1/3Nb2/3)O3–PbTiO3 Ceramics , 2005 .

[32]  Yasuyoshi Saito,et al.  Lead-free piezoceramics , 2004, Nature.

[33]  Xiaowen Zhang,et al.  Structure and implication of morphotropic phase boundary for Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric ceramics , 2001 .

[34]  K. Uchino,et al.  Electrostrictive effect in perovskites and its transducer applications , 1981 .

[35]  K. Uchino,et al.  Electrostrictive effect in perovskites and its transducer applications , 1981 .

[36]  Bernard Jaffe,et al.  CHAPTER 2 – THE PIEZOELECTRIC EFFECT IN CERAMICS , 1971 .